TORONTO, ONTARIO--(Marketwired - Dec 1, 2016) - Eastmain Resources Inc. ("Eastmain" or the "Company") (TSX:ER) is pleased to announce additional assay results from its ongoing, 63,300 m drill program at the Clearwater Project, which includes the Eau Claire deposit, in James Bay, Quebec (see FIGURES 1-4).

These results are from 23 holes (6,225 m) of drilling for a total of 32 holes (9,228) m to date. A summary of significant assay results and drilling data are presented in Tables 1, 2 and 3 below.

Highlights include:

- Eau Claire infill drilling highlights:
 - 43.1 g/t Au over 2.0 m ER16-606 including 96.8 g/t Au over 1.0 m
 - 15.8 g/t Au over 3.5 m ER16-617 including 66.6 g/t Au over 0.7 m
 - 35.3 g/t Au over 0.7 m ER16-602
- Snake Lake drilling continues to intersect mineralization across the targeted area; multiple intercepts for hole ER16-599 are at an average vertical depth of 57 m

Claude Lemasson, Eastmain President and CEO commented, "Our ongoing drill programs continue to showcase encouraging results on a number of fronts. Firstly, our infill results continue to reinforce our existing mineral resource through tighter drill spacing which assists in modelling our mineralized structures. Meanwhile, step-out drilling to the east continues to return positive results indicating potential for future mineral resource growth. Lastly, our Snake Lake results demonstrate more near surface mineralization within 2 km of Eau Claire, and support our thesis for potential satellite deposits."

DRILLING RESULTS - EAU CLAIRE

Eastmain is reporting on the second set of drilling results which includes 15 infill drill holes (4,353 m). To date, a total of 23 holes (7,125 m) of drilling have been reported with assays pending on an additional 23 holes (7,950 m), within the planned 55,700 m (180 hole) Eau Claire drill program. See press release dated October 24, 2016 for initial results.

Drilling at Eau Claire continues to infill the current resource area while testing new targets beyond the known resource envelope. Infill drilling has focused on tightening nominal drill spacing to approximately 25 m within the resource area. This tighter drill spacing provides key information for future consideration of underground exploration and development. This increased information will also provide a foundation for the upcoming Preliminary Economic Assessment scheduled for completion in late 2017, on the back of an updated resource estimate in 2Q 2017.

A fourth drill is expected at Eau Claire by the end of the year, in order to accelerate the overall exploration program.

DRILLING RESULTS - SNAKE LAKE

Eastmain is reporting on the second set of drilling results which includes 8 exploration drill holes (1,872 m). A total of 9 holes (2,103 m) are now complete with assays pending on the final 11 drill holes (2,400 m) at the Snake Lake Target.

The Snake Lake Target is located 1.8 km east from the Eau Claire Deposit, along the Clearwater Deformation Zone. Drilling continues to return encouraging near-surface gold results, with similar quartz-tourmaline related gold mineralization to the Eau Claire deposit. Additionally, gold mineralization in altered basalt flows and interlayered tuffs with sulphide mineralization of up to 15% has been intersected in several holes. All drilling to date encountered mineralization within 169 m from surface, with the vast majority being in the first 100 m.

GOLD MINERALIZATION - EAU CLAIRE

Gold mineralization at the Eau Claire gold deposit is generally located within structurally-controlled, high-grade en-echelon quartz-tourmaline veins and adjacent altered rocks. The vein system is predominantly hosted within a thick sequence of massive and pillowed mafic volcanic flows, interbedded with narrow intervals of volcaniclastic sedimentary rocks. Both flows and sediments have been intruded by multiple phases of felsic and porphyry dykes. Host rocks have been folded and deformed (sheared) through several deformation events. The gold bearing veins may occur as thin fracture fill with tourmaline and develop along an easterly strike and a southerly dip (450W zone) into thick quartz-tourmaline veins with zoned tourmaline+/-actinolite+/-biotite+/-carbonate alteration halos which can measure up to several metres in thickness.

GOLD MINERALIZATION - SNAKE LAKE

Gold mineralization at the Snake Lake occurrence is similar to the Eau Claire deposit. Quartz tourmaline veins are hosted within

a thick sequence of basalt flows, tuffs and interbedded metasedimentary rocks which have been intruded by felsic dykes. As at Eau Claire, the entire sequence has been heavily deformed and sheared resulting in development of a deformation zone with strong and extensive foliation and local shearing. Significant zones of sulphide mineralization (pyrite, pyrrhotite, +/- arsenopyrite +/- chalcopyrite) are also reporting gold mineralization within the deformation zone.

Table 1: Eau Claire: Summary of Drilling Results

	Drill Hole	From	То	Interval	Gold Assay	Vertical Depth ³	Interpreted Zone	
TYPE								
		m	m	m ¹	g/t Au ²	m		
Infill	ER16-591	227.7	229.2	1.5	1.14	193	450 W	
		232.0	234.1	2.1	2.83	197	450 W	
		incl. 233.1	234.1	1.0	4.97		450 W	
Infill	ER16-593	242.1	246.5	4.4	2.03	200	450 W	
		incl. 245.5	246.5	1.0	4.08		450 W	
		269.5	270.0	0.5	15.2	220	450 W	
		271.5	276.0	4.5	0.96	228	450 W	
		incl.275.0	275.5	0.5	3.78		450 W	
		305.0	306.0	1.0	4.50	246	450 W	
Infill	ER16-595	203.0	204.5	1.5	0.64	154	450 W	
		208.5	209.0	0.5	13.6	158	450 W	
		269.6	270.6	1.0	3.24	202	450 W	
		303.5	304.2	0.7	3.06	225	450 W	
Infill	ER16-598	13.6	14.1	0.5	4.15	9	450 W	
		196.3	198.0	1.7	1.17	137	450 W	
Infill	ER16-601	42.4	44.5	2.1	0.91	36	450 W	
Infill	ER16-602	110.8	113.8	3.0	1.09	92	450 W	
		221.5	222.2		35.3	182	450 W	
		270.0	271.9		2.95	221	450 W	
		incl. 270.0			7.22		450 W	
Infill	ER16-605		210.0		2.14	159	450 W	
Infill	ER16-606		158.6		2.90	135	450 W	
		166.6	167.1	0.5	1.29	143	450 W	
		219.6	221.9	2.3	43.1	188	450 W	
		incl. 220.2			96.8			
		224.0	225.0	1.0	3.56	192	450 W	
		248.0	248.7		2.34	211	450 W	
		273.2	273.7		1.57	233	450 W	
		275.6	276.2		1.41	235	450 W	
Infill	ER16-608		193.6	3.0	6.36	164	450 W	
		incl. 192.1			26.4		450 W	
		197.1	197.6	0.5	2.04	168	450 W	
Infill	ER16-609	184.0	185.0	1.0	1.50	142	450 W	
Infill	ER16-610		51.8		7.11	48	450 W	
		61.3	61.8	0.5	4.10	57	450 W	
		142.0	144.0		1.05	132	450 W	
		149.0	150.0	1.0	1.37	138	450 W	
		187.0	187.5		4.65	172	450 W	
Infill	ER16-613		205.1		2.03	183	450 W	
		216.0	216.5		1.13	194	450 W	
		240.4	245.0		4.02	218	450 W	
		incl. 240.4			7.93		450 W	
Infill	ER16-614		146.6		2.78	115	450 W	
		incl. 144.5			4.13		450 W	
Infill	ER16-616		104.2		3.21	75	450 W	
		128.3	130.0		2.15	92	450 W	

Infill	ER16-617	78.3	78.8	0.5	1.18	66	450 W
		111.9	117.5	5.5	1.12	97	450 W
		152.0	152.5	0.5	2.84	128	450 W
		202.1	205.6	3.5	15.8	171	450 W
		incl. 204.8	205.6	8.0	66.6		450 W
		211.2	211.7	0.5	8.90	178	450 W
		223.2	224.2	1.0	8.50	189	450 W
		260.8	261.8	1.0	2.70	220	450 W

Table 2: Snake Lake: Summary of Drilling Results

Drill Hole	From	To	Interval	Gold Assay	Vertical Depth3	Interpreted Zone
	m	m	m ¹	g/t Au ²	m	
ER16-594	126.3	128.0	1.7	1.34	95	biotite, carbonate altered schist with quartz-tourmaline veining
ER16-596	57.0	58.5	1.5	1.14	39	foliated, altered basalt 5% sulphide
	67.0	68.0	1.0	2.95	46	foliated, altered basalt tr. sulphide
	80.6	81.6	1.0	6.38	55	biotite, carbonate altered basalt 5% sulphide
ER16-599	8.8	9.8	1.0	1.33	7	altered basalt 1-10% sulphide
	29.0	33.0	4.0	1.45	21	quartz feldspar porphyry dyke in tuff 2-15% sulphide
	incl. 29.0	30.0	1.0	3.74		
	41.3	41.8	0.5	5.14	29	sulphide mineralized tuff
	46.8	48.8	2.0	1.01	33	sulphide mineralized tuff
	66.9	67.9	1.0	4.02	47	mineralized basalt/tuff contact, 10% sulphide
	163.5	166.0	2.5	2.45	113	quartz/tourmaline vein 5% sulphide
	incl. 163.5	164.5	1.0	4.29		
ER16-600	42.4	44.0	1.6	1.62	31	shear zone, 10% py.
ER16-607	85.5	86.5	1.0	2.30	61	quartz/tourmaline vein 5% sulphide
	142.0	143.0	1.0	1.80	100	biotite/actinolite/ tourmaline altered basalt
ER16-611				NSV		
ER16-615	28.4	29.0	0.6	8.16	20	biotite, tourmaline altered schist, 15% sulphide
	247.8	249.8	2.0	1.13	169	Altered basalt with quartz-epidote
ER16-622				NSV		

^{1.} Intervals are presented in core length; true width will vary depending on the intersection angle of the hole with the targeted zone. Holes are generally planned to intersect vein structures as close perpendicular as possible and true widths are estimated to be 75%-85% of downhole widths.

Table 3: Hole Location Information

Target	Drill Hole	Azimuth	Inclin.	UTM Co	ordinates	Total Length	Elevation
				Zone 18	}		
	Number	Deg.	Deg.	Easting	Northing	(m)	
Eau Claire	ER16-591	355	-58	444891	5785064	297	305
Eau Claire	ER16-593	355	-56	444695	5784994	357	286
Eau Claire	ER16-595	355	-50	444913	5785043	324	301
Eau Claire	ER16-598	355	-45	444990	5785045	282	291
Eau Claire	ER16-601	355	-56	444966	5785069	393	295
Eau Claire	ER16-602	355	-55	444717	5785027	297	291
Eau Claire	ER16-605	355	-50	444938	5785122	249	304
Eau Claire	ER16-606	355	-60	444820	5785008	351	291
Eau Claire	ER16-608	355	-59	444845	5785004	375	291
Eau Claire	ER16-609	355	-52	444988	5785122	201	312
Eau Claire	ER16-610	355	-67	445023	5785049	249	301
Eau Claire	ER16-613	355	-65	445065	5785050	252	309
Eau Claire	ER16-614	355	-60	445066	5785076	201	314
Eau Claire	ER16-616	355	-46	445057	5785133	174	323
Eau Claire	ER16-617	355	-57	444897	5785008	351	291

^{2.} For known mineralized zones, intervals are based on geological observations and limited compositing of veins. Assays presented are not capped. Intercepts occur within geological confines of major zones but have not been correlated to individual vein domains at this time.

^{3.} Vertical depth is measured from the surface to the mid-point of the reported interval.

Snake Lake ER16-594 355	-50	446550 5785015 177	290
Snake Lake ER16-596 355	-45	446664 5784944 225	294
Snake Lake ER16-599 355	-45	446750 5785000 177	280
Snake Lake ER16-600 355	-46	446850 5785000 201	280
Snake Lake ER16-607 360	-45	447120 5784815 423	280
Snake Lake ER16-611 360	-45	447419 5784823 216	280
Snake Lake ER16-615 355	-45	447024 5784813 267	293
Snake Lake ER16-622 355	-45	447195 5785040 186	265

The design of the Eastmain Resources' drilling programs, Quality Assurance/Quality Control and interpretation of results is under the control of Eastmain's geological staff, including qualified persons employing a strict QA/QC program consistent with NI 43-101 and industry best practices. The Clearwater project is supervised by Eastmain's Project Geologist, Michel Leblanc P. Geo.

Drill core is logged and split with half-core samples packaged and delivered to ALS Minerals laboratory. Samples are dried and subsequently crushed to 70% passing a 2 mm mesh screen. A 1000 gram subsample is pulverized to a nominal 85% passing 75 micron mesh screen. The remaining crushed sample (reject) and pulverized sample (pulp) are retained for further analysis and quality control. All samples are analysed by Fire Assay with an Atomic Absorption (AA) finish using a 50 gram aliquot of pulverized material. Assays exceeding 5 g/t Au are re‐assayed by Fire Assay with a Gravimetric Finish. Eastmain regularly inserts 3rd party reference control samples and blank samples in the sample stream to monitor assay performance and performs duplicate sampling at a second certified laboratory. For 2016, approximately 10% of samples submitted are part of the Company's laboratory sample control protocols.

This press release was compiled and approved by William McGuinty, P. Geo., Eastmain's VP Exploration and Qualified Person under National Instrument 43-101.

About Eastmain Resources Inc. (TSX:ER)

Eastmain is a Canadian exploration company with 100% interest in the Eau Claire and Eastmain Mine gold deposits, both of which are located within the James Bay District of Quebec. Clearwater, host of the Eau Claire deposit, is the Company's core asset with access to superior infrastructure in a favourable mining jurisdiction. Eastmain also holds a pipeline of exploration projects in this new Canadian mining district, including being a partner in the Éléonore South Joint Venture.

Forward- Looking Statements - Certain information set forth in this news release may contain forward-looking statements that involve substantial known and unknown risks and uncertainties. Forward-looking statements consist of statements that are not purely historical, including statements regarding beliefs, plans, expectations or timing of future plans, and include, but not limited to, statements with respect to the potential success of the Company's future exploration and development strategies. These forward-looking statements are subject to numerous risks and uncertainties, certain of which are beyond the control of Eastmain, including, but not limited to the impact of general economic conditions, industry conditions, dependence upon regulatory approvals, the availability of financing, timely completion of proposed studies and technical reports, and risks associated with the exploration, development and mining industry generally such as economic factors as they affect exploration, future commodity prices, changes in interest rates, safety and security, political, social or economic developments, environmental risks, insurance risks, capital expenditures, operating or technical difficulties in connection with development activities, personnel relations, the speculative nature of gold exploration and development, including the risks of diminishing quantities of grades of Mineral Resources, contests over property title, and changes in project parameters as plans continue to be refined. Readers are cautioned that the assumptions used in the preparation of such information, although considered reasonable at the time of preparation, may prove to be imprecise and, as such, undue reliance should not be placed on forward-looking statements. The Company assumes no obligation to update such information, except as may be required by law.

Contact

Claude Lemasson
President and CEO
+1 647-347-3765
lemasson@eastmain.com
Alison Dwoskin
Manager Investor Relations
+1 647-347-3735
dwoskin@eastmain.com