VANCOUVER, BRITISH COLUMBIA--(Marketwired - Jun 7, 2017) - <u>Aton Resources Inc.</u> (TSX VENTURE:AAN) ("Aton" or the "Company") is pleased to provide investors with the results from the first phase of the regional target identification program at the Company's 100% owned Abu Marawat concession ("Abu Marawat" or the "Concession"), located in the Eastern Desert of Egypt.

Highlights:

- Aton's field crews have sampled the Abu Gaharish, Bohlog, Waayrah, West Garida and Sir Bakis prospects;
- Field inspection and sampling of the Abu Gaharish prospect has defined the presence of high grade structurally controlled gold mineralization over a strike length of almost 2km, coincident with a spectral anomaly;
- Two-thirds of samples from Abu Gaharish returned assays greater than 1 g/t Au (see Appendix A), with channel and grab samples returning assays up to 22.6 g/t Au and 26.6 g/t Au respectively;
- Field inspection and sampling of the Bohlog prospect area has indicated the potential for intrusion related gold mineralization in altered granodiorite host rocks. Channel and grab samples have returned assays up to 15.4 g/t Au and 21.1 g/t Au respectively (see Appendix B);
- Dr Michael Brown (Mappa Mundi Surveys) has completed his review of the WorldView-3 high resolution multispectral data over the Hamama and Abu Marawat-Miranda-Semna survey areas (see news release dated April 4, 2017) and has identified 92 and 155 spectral targets from the 2 areas respectively.

Aton's geologists have visited and carried out preliminary field inspections and sampling at Abu Gaharish, Bohlog, Waayrah, Black Gaharish, Semna East, Sir Bakis, and West Garida prospects (see Figure 1). Waayrah, Black Gaharish, and Semna East represent new areas of interest within the Abu Marawat Concession. Results have been received for the Abu Gaharish and Bohlog prospects, and results from the other areas sampled are expected in June. Potential for the development of intrusion related and structurally controlled orogenic gold mineralization has been identified at Bohlog and Abu Gaharish, respectively, with visible gold identified in samples from both locations.

"Early results from the regional target identification program demonstrate the district scale potential of Abu Marawat," said Mark Campbell, President and CEO of Aton. "Historically, very little regional exploration work has been conducted on the Concession, with the focus of the Company being the Hamama and Abu Marawat deposits. However, we believe that the remote sensing and spectral data will help us to identify and zero in on high priority exploration targets, like Abu Gaharish and Bohlog, that could result in a new, significant discovery at Abu Marawat."

To view Figure 1: Abu Marawat regional geology, showing the locations of Abu Gaharish and Bohlog please visit the following link: http://media3.marketwire.com/docs/1096710_Fig1.pdf

Abu Gaharish Prospect

The Abu Gaharish prospect is located approximately 30km east of Hamama (see Figure 1). There are a number of ancient houses, pits, trenches, and underground workings in the area, with archaeological evidence of ancient mining dating back over 3000 years to the New Kingdom period. The area has also been inspected for the potential of tungsten mineralization in the modern era (Klemm and Klemm, 2013).

As part of the Company's regional target identification program, the Abu Gaharish area was identified as having potential for structurally controlled or orogenic gold mineralisation. In addition, the Abu Gaharish area was identified as having a coincident phyllic spectral anomaly from the recently completed Landsat-ASTER remote sensing study of Abu Marawat. Furthermore, several sigmoidal *en echelon* ancient workings were identified from satellite imagery on the margin of the Abu Gaharish granite and the surrounding meta-volcanic sequence, representing a potentially favourable site for the development of structurally controlled shear zone hosted gold mineralisation.

A preliminary field inspection indicated that the main ancient workings are associated with at least three mineralized quartz veins associated with highly sheared and altered granitic rocks, over a strike length of some 600m. The host granite is highly altered to sericite, chlorite, and kaolinite, and is sheared close to the veins. Fresh sulphides, including chalcopyrite and galena were identified within the quartz veins, as well as copper and lead supergene species, including chrysocolla and malachite, which are the most common accessory ore minerals seen. The quartz veins are seen to pinch and swell and have variable dips and strikes. The veins trend in a generally northerly direction, however, within the *en echelon* structure, the veins are sometimes seen to strike SE-NW. Parallel veinlets and stringers form surrounding zones of considerable thickness, and always accompany the main veins. In places the quartz veins and associated sheared host rock have been mined down to 10m and possibly deeper, as most of the ancient workings show signs of collapse. A number of other mineralized zones were identified to the north-east in meta-volcanics, to the south in altered serpentinites, and to the north and west of the main zone of historical workings, within the Abu Gaharish granite.

To view Figure 2: Sample locations and grades from the Abu Gaharish prospect please visit the following link: http://media3.marketwire.com/docs/1096710_Fig2.pdf

Aton's field crews collected a total of 44 samples from the Abu Gaharish area (Figure 2), with the majority being rock chip

channel samples taken across and perpendicular to the identified mineralized quartz vein structures. Other samples include chip composite samples and grab samples. Over 66 percent (29) of the samples returned grades over 1 g/t Au, including 14 percent (6) over 10 g/t Au, with grades including 26.6 g/t Au, 22.6 g/t Au, 19.9 g/t Au, and 18.5 g/t Au (see Appendix A). Visible gold was also identified in several of the samples. The sampling has confirmed the presence of high grade gold mineralization over a strike length of almost 2km in the Abu Gaharish area (Figure 2). The highest-grade mineralization appears to occur on the vein margins which carry lenses of iron oxide and chrysocolla, replacing sulphides, with tiny flakes of visible gold.

Aton believes that the Abu Gaharish *en echelon* vein system has potential for reasonable depth continuity and that other parallel and "ladder" type structures are likely to exist near the main zone of workings. The presence of old workings and high-grade assay results from several samples in a zone approximately 250-300m west of the main mineralized zone (see Figure 2), as well as the widespread presence of wadi sediment cover very close to the exposed workings, also indicates the possible existence of parallel structures that are not exposed.

The initial field inspection and sampling indicates the potential for a high grade structurally controlled zone of gold deposition at Abu Gaharish centred on the ancient workings over a 500-600m strike length. Furthermore, sampling along both the southern and northern strike extensions of the ancient workings has confirmed the presence of high grade gold mineralization over almost 2km. Further follow-up sampling and geological mapping is planned at Abu Gaharish.

Bohlog Prospect

Bohlog is located approximately 18km east-north-east of Hamama (see Figure 1) and is centred around a large ancient settlement, with archaeological evidence of ancient mining dating from the New Kingdom through to the Early Arab periods, dating back over 3000 years (Klemm and Klemm, 2013). In 2012 the Company carried out limited sampling in the Bohlog area (see news release dated August 15, 2012), returning gold grades of up to 18.65g/t Au from samples of mineralized quartz veins. However, no follow up work was carried out until earlier this year as part of the Aton's regional target identification program.

The Company's field crews have identified several structures, including four separate mineralized zones, within strongly altered intermediate to felsic intrusive host rocks. The 2 main mineralized structures, Zone 1 and Zone 2, parallel each other and trend in a north-easterly direction (see Figure 3). Zone 1, the northern structure, can be traced through old workings and outcrops for approximately 1.5km while Zone 2, the southern structure, can be traced for approximately 1.2km. The main structures appear to be shallow dipping, 20-60 degrees to the south-east, and the quartz veins are hosted in zones of intense quartz-sericite-pyrite alteration. These broader alteration zones contain associated stringer and stockwork style mineralisation. The iron-stained quartz veins have patches of iron-oxide boxwork that contain visible gold, minor supergene lead minerals, and occasional copper staining. The host rocks at Zone 1 and the south west end of Zone 2 are phyllic altered quartz diorite or granodiorite. Kaolinite-argillic alteration is also widespread, particularly around Zone 2. Further, while strong local structural controls exist, the nature and the composition of the alteration suggests an intrusion driven hydrothermal system. Aton believes that the Bohlog area has good potential for the development of intrusion related gold mineralization.

A total of 93 samples were taken from the Bohlog area, primarily from Zones 1 and 2. Most of the samples were channel samples, taken across and perpendicular to the identified mineralised quartz vein structures (Figure 3). Other samples included chip composite samples and grab samples. The results of this program confirmed the 2012 results, with 35 of the samples returning grades over 1 g/t Au, and 4 returning grades over 10 g/t Au, up to a maximum of 21.1 g/t Au. One continuous channel sample profile over Zone 1 returned a combined intersection of 16.7 m @ 3.03 g/t Au (sample numbers 14018-14027 - see Appendix B).

Sampling has delineated mineralization over an area of at least 800 x 600m, with good potential for this area to further expand in size. Other localities have been identified from satellite imagery in the general Bohlog area that require field follow up. Additional sampling, geological mapping, and trenching are planned on Zones 1 and 2 at Bohlog, as well as ongoing regional evaluation of the Bohlog-Massaghat area for the potential development of intrusion related gold mineralization.

To view Figure 3: Sample locations and grades from the Bohlog prospect please visit the following link: http://media3.marketwire.com/docs/1096710_Fig3.pdf

Activity update:

- Additional results from the preliminary field inspections and sampling conducted at Waayrah, Sir Bakis and West Garida prospects;
- Crone Geophysics have completed a ground and downhole electromagnetic survey of the 6-km long prospective horizon (or the hanging wall contact) at Hamama. Interpretation of the survey data has commenced;
- Metallurgical test work in preparation of a Preliminary Economic Assessment for Hamama West.

About Aton Resources Inc.

Aton Resources Inc. (TSX VENTURE:AAN) is focused on its 100% owned Abu Marawat Concession ("Abu Marawat"), located in Egypt's Arabian-Nubian Shield, approximately 200-km north of Centamin's Sukari gold mine. Aton has identified a 40-km long

gold trend at Abu Marawat, anchored by the Hamama deposit in the west and the Abu Marawat deposit in the east. In addition to the Hamama and Abu Marawat deposits, the trend contains numerous gold exploration targets, including three historic British mines. Abu Marawat is over 738km² in size and is in an area of excellent infrastructure, a four-lane highway, a 220kV power line, and a water pipeline are in close proximity.

Qualified Person

The technical information contained in this News Release was prepared by Roderick Cavaney BSc, MSc (hons), MSc (Mining & Exploration Geology), FAusIMM, SEG, GSA, SME, Vice President, Exploration, of <u>Aton Resources Inc.</u> Mr. Cavaney is a qualified person (QP) under National Instrument 43-101 Standards of Disclosure for Mineral Projects.

For further information regarding Aton Resources Inc., please visit us at www.atonresources.com.

Note Regarding Forward-Looking Statements

Some of the statements contained in this release are forward-looking statements. Since forward-looking statements address future events and conditions; by their very nature they involve inherent risks and uncertainties. Actual results in each case could differ materially from those currently anticipated in such statements.

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Appendix A - 2017 Abu Gaharish samples, assay data

Sample ID	Sample Type	Length	Χ	Υ	Z	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm
AHA14010	Chip composite		564568	2917249	478	13.25	71.5	8690	27300	1170
AHA14011	Grab		564500	2917809	467	26.60	37.3	36	3060	192
AHA14127	Chip channel	2	564570	2917245	466	2.89	3.2	56	493	195
AHA14128	Chip channel	1.5	564566	2917242	468	1.45	4.9	87	444	953
AHA14129	Chip channel	2	564565	2917243	469	0.12	0.5	8	16	35
AHA14130	Chip channel	2.5	564566	2917239	472	0.70	0.7	19	23	53
AHA14131	Chip channel	2	564582	2917137	478	1.55	1.5	61	436	1090
AHA14132	Chip channel	2	564577	2917137	477	0.35	2.8	12	211	106
AHA14133	Chip channel	3	564577	2917139	480	2.07	2.9	46	1040	269
AHA14134	Grab		564555	2917276	467	11.45	7.9	640	4	22
AHA14135	Grab		564564	2917281	468	19.90	50.9	2160	23800	519
AHA14136	Chip channel	1	564577	2917352	481	22.60	52.8	44	1040	33
AHA14137	Chip channel	2	564578	2917361	481	1.60	1.1	30	119	126
AHA14138	Chip channel	0.5	564583	2917366	480	3.85	5.8	21	151	59
AHA14139	Chip channel	1.5	564588	2917420	478	2.28	3.2	28	322	81
AHA14140	Chip channel	1	564588	2917436	478	3.03	4.1	8	624	194
AHA14141	Chip Sample		564589	2917436	478	0.15	<0.5	7	57	146
AHA14142	Chip channel	1	564607	2917447	476	0.19	<0.5	3	12	17
AHA14143	Chip channel	2	564625	2917515	487	0.74	1.8	36	295	189
AHA14144	Chip channel	0.5	564627	2917515	486	2.59	8.1	29	668	30
AHA14145	Chip channel	1	564628	2917515	486	0.88	1.7	21	172	150
AHA14146	Chip Sample		564601	2917520	482	2.00	8.0	11	221	334
AHA14147	Chip channel	1.5	564597	2917521	482	6.06	6.9	2	299	34
AHA14148	Chip channel	1.5	564596	2917522	482	1.05	1.7	25	105	178
AHA14149	Chip channel	2	564669	2917593	492	0.88	0.7	83	57	83
AHA14150	Chip channel	1.5	564667	2917594	491	0.18	0.6	12	27	64
AHA14151	Chip channel	1	564666	2917595	493	0.12	1.2	8	22	37
AHA14152	Chip Sample		564686	2917626	496	0.14	8.0	38	32	55
AHA14153	Chip Sample		564707	2917671	489	0.64	2.8	54	84	128
AHA14154	Chip Sample		564754	2917736	480	2.63	6.9	37	644	136
AHA14155	Chip channel	1	565149	2918256	508	7.29	354	2820	11600	106
AHA14156	Grab composite		565133	2918254	509	9.60	8.2	115	260	76
AHA14157	Grab composite		564643	2918013	460	4.86	17	32	298	46

AHA14158	Chip channel	2	564520	2916900	480	18.45	23.9	21	916	486
AHA14159	Chip channel	1	564520	2916898	480	6.76	6.3	67	1860	510
AHA14160	Chip channel	1	564518	2916898	480	1.18	4	5	44	14
AHA14161	Chip channel	2	564517	2916898	480	80.0	<0.5	4	23	62
AHA14162	Chip channel	2	564482	2916800	489	0.40	4.3	49	86	37
AHA14163	Chip channel	2.5	564487	2916780	491	5.48	6.9	92	509	143
AHA14164	Grab		564229	2916843	487	4.03	6.5	21	132	33
AHA14165	Grab		564731	2916524	518	6.44	2.8	75	7	11
AHA14166	Grab		564924	2916533	503	0.01	<0.5	587	<2	94
AHA14167	Chip composite	2	564765	2916852	513	3.46	3.4	97	95	70
AHA14168	Chip composite	1.5	564665	2916626	523	7.73	9.7	265	76	48

Appendix B - 2017 Bohlog samples, assay data

Sample ID	Sample Type	Length	Χ	Υ	Z	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm
AHA14018	Chip Channel	2	550250	2920434	670	0.47	<0.5	3	5	48
AHA14019	Chip Channel	2	550248	2920434	671	2.44	0.5	4	20	129
AHA14020	Chip Composite	0.4	550250	2920439	669	5.72	3.6	28	94	1170
AHA14021	Chip Channel	2	550247	2920437	669	4.69	2.5	56	382	1525
AHA14022	Chip Channel	2	550246	2920440	671	7.84	4.8	72	456	2310
AHA14023	Chip Channel	2	550244	2920440	672	2.80	2.9	27	466	209
AHA14024	Chip Channel	2	550242	2920441	672	4.05	1.2	13	69	947
AHA14025	Chip Composite	0.3	550241	2920444	671	3.69	2.3	12	77	261
AHA14026	Chip Channel	2	550240	2920445	672	1.22	1.7	6	34	113
AHA14027	Chip Channel	2	550240	2920447	672	0.07	< 0.5	2	7	35
AHA14028	Chip Channel	2	550160	2920365	680	0.36	< 0.5	2	3	40
AHA14029	Chip Channel	2	550161	2920366	680	3.27	0.5	5	7	243
AHA14030	Chip Channel	1.2	550164	2920367	680	3.78	1.3	2	31	23
AHA14031	Chip Channel	2	550166	2920365	677	0.37	< 0.5	3	19	77
AHA14032	Chip Channel	2	550169	2920371	679	15.40	3.5	8	87	235
AHA14033	Chip Channel	0.2	550169	2920369	679	0.23	0.5	8	15	157
AHA14034	Chip Channel	0.3	550171	2920368	677	1.42	0.7	8	29	399
AHA14035	Chip Channel	2	550177	2920368	675	7.24	2.9	27	46	1125
AHA14036	Chip Channel	2	550177	2920366	675	0.37	1.1	26	4	1745
AHA14037	Chip Channel	2	550177	2920365	675	1.50	1.3	13	77	242
AHA14038	Chip Channel	2	550134	2920327	677	0.03	< 0.5	2	5	29
AHA14039	Chip Channel	2	550132	2920328	677	0.10	< 0.5	2	6	32
AHA14040	Chip Channel	2	550131	2920330	676	0.13	< 0.5	5	5	46
AHA14041	Chip Channel	2	550130	2920331	678	1.94	1.4	3	32	61
AHA14042	Chip Channel	2	550122	2920331	680	0.18	< 0.5	4	9	27
AHA14043	Chip Channel	2	550151	2920341	677	0.34	< 0.5	4	41	115
AHA14044	Chip Channel	0.4	550150	2920343	677	2.18	8.0	2	29	30
AHA14045	Chip Channel	2	550149	2920345	678	0.16	0.5	4	13	98
AHA14046	Chip Channel	2	550149	2920347	678	0.24	< 0.5	2	12	30
AHA14047	Chip Channel	2	550079	2920302	694	0.05	< 0.5	6	8	53
AHA14048	Chip Channel	0.3	550078	2920302	703	0.72	8.0	4	56	147
AHA14049	Chip Channel	2	550077	2920303	702	0.18	<0.5	6	7	54
AHA14050	Chip Channel	2	550077	2920305	702	0.30	0.5	12	9	34
AHA14051	Chip Channel	2	550078	2920310	699	0.25	0.6	3	11	35
AHA14052	Chip Channel	2	550078	2920311	699	0.26	0.5	6	21	39
AHA14053	Chip Channel	1	550227	2920424	677	0.92	1.4	23	90	457
AHA14054	Chip Channel	2	550226	2920426	676	2.96	0.7	10	11	1140
AHA14055	Chip Channel	2	550226	2920428	677	0.46	<0.5	3	13	73
AHA14056	Chip Channel	2	550201	2920034	683	0.15	<0.5	3	22	13
AHA14057	Chip Channel	2	550200	2920032	682	0.16	0.6	10	104	96
AHA14058	Chip Channel	1	550199	2920031	683	0.61	3.0	24	416	43
AHA14059	Chip Channel	2	550198	2920030	681	2.76	6.9	49	1005	240
AHA14060	Chip Channel	2	550196	2920029	681	0.91	2.6	39	722	252

AHA14061	Grab			2920029			7.3	49	2430	292
AHA14062				2920015			34.6	54	15450	201
AHA14063				2920019			3.2	60	1380	857
	Chip Channel	2		2920002			1.4	22	855	316
	Chip Channel	2		2920004			3.1	58	1885	540
	Chip Channel	2	550255	2920057	675	0.03	0.5	4	21	240
	Chip Channel	2		2920059			<0.5	2	10	48
AHA14068	Chip Channel	2		2920062			<0.5	3	25	50
	Chip Channel	2	550252	2920065	678	0.05	<0.5	4	34	76
AHA14070	Chip Channel	2	550245	2920070	679	0.02	<0.5	3	15	25
	Chip Channel	2	550246	2920072	679	0.04	<0.5	2	11	15
AHA14072	Chip Channel	2	550247	2920074	680	0.02	<0.5	1	4	12
	Chip Channel	2	550248	2920076	678	0.02	<0.5	1	3	25
AHA14074	Chip Channel	1	550239	2920078	680	0.01	<0.5	5	8	25
AHA14075	Chip Channel	2	550240	2920079	683	0.01	<0.5	3	6	31
AHA14076	Chip Channel	2	550241	2920081	681	0.01	<0.5	1	10	20
AHA14077	Chip Channel	2	550243	2920083	682	0.01	<0.5	2	6	21
AHA14078	Chip Channel	2	550245	2920083	682	0.01	<0.5	1	9	14
AHA14079	Grab		550591	2920846	676	0.45	0.5	4	1	55
AHA14080	Grab		550592	2920851	679	0.01	<0.5	15	6	106
AHA14081	Chip Channel	2	550676	2920911	676	0.01	<0.5	5	4	36
AHA14082	Chip Channel	2	550676	2920909	677	< 0.005	< 0.5	2	1	10
AHA14083	Chip Channel	2	550679	2920909	676	< 0.005	< 0.5	8	9	44
AHA14084	Chip Channel	4	551058	2921404	673	0.01	< 0.5	2	1	19
AHA14085	Chip Channel	2	550450	2919712	658	1.31	0.5	32	237	332
AHA14086	Chip Channel	1	550452	2919712	658	1.73	1.0	12	513	120
AHA14087	Chip Channel	1	550453	2919712	659	0.79	1.1	19	524	306
AHA14088	Chip Channel	2	550606	2920236	654	0.21	<0.5	4	5	79
AHA14089	Chip Channel	1	550607	2920237	656	4.07	13.2	18	294	157
AHA14090	Chip Channel	2	550607	2920239	656	0.62	1.0	17	246	331
AHA14091	Chip Channel	0.4	550671	2920242	663	0.66	1.1	26	25	20
AHA14092	Chip Channel	2	550671	2920243	663	3.35	0.7	4	334	307
AHA14093	Chip Channel	2	550896	2920368	663	0.17	<0.5	5	40	35
AHA14094	Chip Channel	1	550849	2920340	663	0.03	0.5	3	15	63
AHA14095	Chip Channel	5	549954	2921176	682	0.01	<0.5	4	3	23
AHA14096	Chip Channel	5	549960	2921230	692	< 0.005	<0.5	9	1	16
AHA14097	Chip Channel	6	549963	2921223	690	< 0.005	<0.5	3	1	13
AHA14098	Chip Channel	6	549969	2921218	689	< 0.005	<0.5	7	5	35
AHA14099	Chip Channel	6	549973	2921213	688	< 0.005	<0.5	8	3	30
AHA14100	Chip Channel	7	549976	2921207	687	< 0.005	<0.5	3	2	15
AHA14101	Grab		551491	2921872	679	3.74	28.4	31	4	631
AHA14106	Grab		550253	2920026	674	1.55	3.4	11	378	179
AHA14736	Grab		550203	2920399	670	21.10	5.2	288	3740	399
AHA14737	Chip Channel	8.0	550060	2920259	683	6.29	1.7	8	49	40
	Chip Channel	0.5		2920254			0.4	9	16	70
	Chip Channel	1		2920249			0.2	51	33	225
	Chip Channel	1		2920249			0.1	11	5	88
	Chip Channel	0.5		2920004			7.6	20	1945	115
	Chip Channel	1		2920003			3.3	35	1815	1085
	Chip Channel	1		2920003			0.4	48	297	7900
AHA14746	•			2920003			7.2	69	4790	139
			-		-	=				

Contact

Aton Resources Inc.
Mark Campbell
President and Chief Executive Officer +1-936-689-2589 mcampbell@atonresources.com Aton Resources Inc.
Blaine Monaghan
Vice President, Investor Relations
+1 (604) 331-5092
ir@atonresources.com