# High-Grade Core Shaping up at White Hill

04.10.2023 | GlobeNewswire

TORONTO, Oct. 04, 2023 - Xanadu Mines Ltd. (ASX: XAM, TSX: XAM) (Xanadu, XAM or the Company) is pleased to provide an update on infill drilling at the Kharmagtai Project in Mongolia, being developed with the Company's joint venture partner Zijin Mining Group Co. Ltd. (Zijin). Infill drilling continues to expand upon the new zone (core) of high-grade copper and gold mineralisation at the White Hill deposit, demonstrating progressive growth in high-grade material at the base of the previously optimised open pits.

## Highlights

- Extensive ~48,000m of infill diamond drilling has been completed at Kharmagtai to support the Pre-Feasibility Study (PFS).
- Latest results expand upon the recently identified high-grade zone (core) at White Hill<sup>1</sup>, located below the previous Scoping Study pit designs<sup>2</sup>.
- Best drilling results below, and within the pit, include:
  - KHDDH661 325m @ 0.38% eCu (0.33% Cu & 0.11g/t Au) from 570m

Including 146.2m @ 0.50% eCu (0.43% Cu & 0.13g/t Au) from 700.8m

Including 23.7m @ 0.84% eCu (0.74% Cu & 0.20g/t Au) from 792.3m

Including 12m @ 1.00% eCu (0.87% Cu & 0.26g/t Au) from 794m

And 10m @ 0.92% Cu (0.85% Cu and 0.12g/t Au) from 830m

And 4m @ 1.28% Cu (1.2% Cu and 0.16g/t Au) from 834

• KHDDH665 - 733m @ 0.39% eCu (0.31% Cu & 0.15g/t Au) from 80m

Including 210.7m @ 0.55% eCu (0.43% Cu & 0.23g/t Au) from 411.3m

Including 56m @ 0.85% eCu (0.66% Cu & 0.37g/t Au) from 490m

Including 23m @ 1.16% eCu (0.92% Cu & 0.46g/t Au) from 521m

- Newly identified high-grade (>1% eCu) core at White Hill demonstrates potential to:
  - Enhance 2021 Mineral Resource Estimate<sup>3</sup> (MRE) in preparation for updated PFS MRE in 4Q
  - Expand and deepen 2022 Scoping Study<sup>4</sup> pit shells to capture additional higher grade for longer period.
- Additional follow-up drilling is being planned around the newly identified high-grade (core) zone at White Hill and higher-grade extensions identified at Stockwork Hill<sup>5</sup>.
- Growth-focused discovery exploration drilling at Kharmagtai is continuing with 4 diamond rigs
- investigating shallow targets and one drill rig targeting deep mineralisation.

   Kharmagtai JV is funding US\$35M6 for both PFS completion and discovery exploration, aiming towards decision to mine in Q4 CY2024.

Xanadu's Executive Chairman and Managing Director, Mr Colin Moorhead, said "We continue to advance our understanding of the Kharmagtai copper and gold deposit through our extensive infill drilling program. The final assay results from the initial infill drill program are currently being received, and we have started the resource modelling. We look forward to delivering the results of this work in a Mineral Resource Estimate upgrade in Q4 CY2024.

15.12.2025 Seite 1/14 It is particularly exciting to see the continued high-grade results from White Hill deposit where we have effectively intercepted the top of a previously undefined high-grade core. Discovery of a high-grade core at White Hill is important and highlights strong potential for additional vertical extensions of high-grade mineralised zones, similar to both, the Stockwork Hill and Copper Hill deposits. This has potential to add additional high-grade mining inventory, which could translate to real value in the Kharmagtai open pit. Drilling will continue to define this high-grade core at White Hill.

Significantly, Kharmagtai still has significant new discovery potential, and we continue to explore with four diamond drill rigs testing shallow higher-grade targets and another drill rig testing potential high-grade resource extensions at depth as part of our on-going exploration discovery strategy.

Infill Drilling Expands High-Grade Core at White Hill

Assay results have been returned for 21 additional drill holes at White Hill, with grades on the most part materially better than or in line with the 2021 White Hill MRE<sup>7</sup> (Figures 1 to 4; Appendix 1).

Figure 1: Cross section 592050mE through the White Hill deposit.

Figure 2: Cross section 592145mE through the White Hill deposit.

Figure 3: Cross section 592250mE through the White Hill deposit.

Drill hole KHDDH661, located on the southern margin of the White Hill deposit, intersected a significantly higher-grade zone of copper and gold mineralisation, on the margin of the current optimised pit design (Figures 1 and 2).

| Hole ID Pro  | spect From (m | ) To (m) | Interval (m) | Au (g/t) | Cu (%) | CuEq (%) | AuEq (g/t) |
|--------------|---------------|----------|--------------|----------|--------|----------|------------|
| KHDDH661 Whi | te Hill 143   | 558.2    | 415.2        | 0.10     | 0.22   | 0.27     | 0.52       |
| including    | 478           | 495.2    | 17.2         | 0.30     | 0.57   | 0.73     | 1.43       |
| including    | 482           | 490      | 8            | 0.41     | 0.70   | 0.91     | 1.78       |
| including    | 554           | 558.2    | 4.2          | 0.18     | 0.63   | 0.72     | 1.41       |
| including    | 576           | 608      | 32           | 0.22     | 0.55   | 0.66     | 1.29       |
| including    | 757           | 763      | 6            | 0.28     | 0.65   | 0.79     | 1.55       |
| including    | 792.3         | 816      | 23.7         | 0.20     | 0.74   | 0.84     | 1.65       |
| including    | 794           | 806      | 12           | 0.26     | 0.87   | 1.00     | 1.96       |
| including    | 830           | 840      | 10           | 0.12     | 0.85   | 0.92     | 1.79       |
| including    | 834           | 838      | 4            | 0.16     | 1.20   | 1.28     | 2.50       |

Drill hole KHDDH665 targeted definition and expansion of White Hill mineralisation. Intersecting a new high-grade zone, it returned the following interval, including broad zones where the 2021 MRE had predicted significantly lower grades (Figure 2):

| Hole ID   | Prospect   | From (m) | To (m) | Interval (m) | Au (g/t) | Cu (%) | CuEq (%) | AuEq (g/t) |
|-----------|------------|----------|--------|--------------|----------|--------|----------|------------|
| KHDDH665  | White Hill | 80       | 813    | 733          | 0.15     | 0.31   | 0.39     | 0.77       |
| includina |            | 353      | 361    | 8            | 0.30     | 0.55   | 0.70     | 1.37       |

15.12.2025 Seite 2/14

| including | 411.3 | 622    | 210.7 | 0.23 | 0.43 | 0.55 | 1.07 |
|-----------|-------|--------|-------|------|------|------|------|
| including | 462.8 | 474    | 11.2  | 0.27 | 0.48 | 0.62 | 1.21 |
| including | 490   | 546    | 56    | 0.37 | 0.66 | 0.85 | 1.67 |
| including | 521   | 544    | 23    | 0.46 | 0.92 | 1.16 | 2.26 |
| including | 564   | 572    | 8     | 0.28 | 0.71 | 0.85 | 1.67 |
| including | 582   | 604    | 22    | 0.23 | 0.55 | 0.67 | 1.32 |
| including | 682   | 696    | 14    | 0.16 | 0.53 | 0.61 | 1.20 |
| including | 741   | 746.76 | 5.76  | 0.13 | 0.99 | 1.05 | 2.06 |
| including | 741   | 745    | 4     | 0.14 | 1.09 | 1.16 | 2.28 |
|           |       |        |       |      |      |      |      |

Drill holes KHDDH669 and KHDDH670 targeted areas of low drill density within the eastern portion of the scoping study open pit. Both holes returned significantly higher results than the previous MRE had predicted (Figure 3):

| Hole ID   | Prospect   | From (m) | To (m) | Interval (m) | Au (g/t) | Cu (%) | CuEq (%) | AuEq (g/t) |
|-----------|------------|----------|--------|--------------|----------|--------|----------|------------|
| KHDDH669  | White Hill | 2.8      | 600.5  | 597.7        | 0.22     | 0.32   | 0.43     | 0.84       |
| and       |            | 48       | 538    | 490          | 0.25     | 0.34   | 0.47     | 0.92       |
| including |            | 198      | 209    | 11           | 0.35     | 0.43   | 0.61     | 1.18       |
| including |            | 308      | 347.6  | 39.6         | 0.49     | 0.45   | 0.70     | 1.37       |
| including |            | 312      | 316    | 4            | 1.03     | 0.66   | 1.19     | 2.32       |
| including |            | 506      | 514    | 8            | 0.29     | 0.53   | 0.68     | 1.32       |
| and       |            | 548      | 598    | 50           | 80.0     | 0.23   | 0.27     | 0.54       |

| Hole ID   | Prospect   | From (m) | To (m) | Interval (m) | Au (g/t) | Cu (%) | CuEq (%) | AuEq (g/t) |
|-----------|------------|----------|--------|--------------|----------|--------|----------|------------|
| KHDDH670  | White Hill | 0.3      | 763    | 762.7        | 0.21     | 0.32   | 0.42     | 0.83       |
| including |            | 71       | 96.6   | 25.6         | 0.38     | 0.44   | 0.63     | 1.23       |
| including |            | 511.3    | 523    | 11.7         | 0.33     | 0.53   | 0.70     | 1.38       |
| including |            | 564      | 622    | 58           | 0.33     | 0.55   | 0.72     | 1.41       |
| including |            | 608      | 614    | 6            | 0.41     | 0.70   | 0.91     | 1.78       |
| including |            | 672      | 682    | 10           | 0.18     | 0.76   | 0.85     | 1.66       |
| including |            | 672      | 680    | 8            | 0.19     | 0.76   | 0.86     | 1.68       |
| including |            | 713      | 745    | 32           | 0.62     | 0.45   | 0.76     | 1.49       |
| including |            | 731      | 741    | 10           | 0.12     | 0.70   | 0.76     | 1.49       |

# About the Infill Drilling Program

Four diamond drill rigs are currently focussed on Kharmagtai infill drilling, with the objective to target areas with potential for future Mineral Resource to Ore Reserve conversion. Totalling ~48,000 metres, the infill drilling program is planned to specifically increase the Resource confidence category from Inferred to Indicated. As such, the planned drill holes aim to remove any mineralisation knowledge gaps around the edges of existing deposits.

Figure 4: Kharmagtai copper-gold district showing currently defined mineral deposits, and infill drill holes.

Kharmagtai currently has an Inferred and Indicated Resource of 1.1Bt at 0.3% Cu and 0.2g/t gold, containing 3Mt Cu and 8Moz Au<sup>8</sup>. As part of the Kharmagtai PFS, the Resource will be upgraded to at least Indicated classification, enabling a maiden, JORC compliant Ore Reserve to be reported. To achieve this, the infill

15.12.2025 Seite 3/14

drilling program is designed to upgrade and extend strike length of the shallow open pit Resource areas and selected deeper high-grade zones (Figure 4), including investigation of near-mine, higher-grade extensions.

## About Xanadu Mines

Xanadu is an ASX and TSX listed Exploration company operating in Mongolia. We give investors exposure to globally significant, large-scale copper-gold discoveries and low-cost inventory growth. Xanadu maintains a portfolio of exploration projects and remains one of the few junior explorers on the ASX or TSX who jointly control a globally significant copper-gold deposit in our flagship Kharmagtai project. Xanadu is the Operator of a 50-50 JV with Zijin Mining Group in Khuiten Metals Pte Ltd, which controls 76.5% of the Kharmagtai project.

For further information on Xanadu, please visit: www.xanadumines.com or contact:

Colin Moorhead Executive Chairman & Managing Director E: colin.moorhead@xanadumines.com P: +61 2 8280 7497

This Announcement was authorised for release by Xanadu's Board of Directors.

## Appendix 1: Drilling Results

Note that true widths will generally be narrower than those reported. See disclosure in JORC explanatory statement attached.

Table 1: Drill hole collar

| Hole ID  | Prospect   | East   | North   | RL   | Azimuth (°) | Inc (°) | Depth (m) |
|----------|------------|--------|---------|------|-------------|---------|-----------|
| KHDDH642 | White Hill | 591877 | 4877030 | 1307 | 0           | -60     | 625.0     |
| KHDDH644 | White Hill | 591876 | 4877532 | 1301 | 0           | -60     | 200.0     |
| KHDDH645 | White Hill | 591876 | 4876849 | 1310 | 0           | -60     | 715.6     |
| KHDDH651 | White Hill | 592006 | 4877113 | 1304 | 180         | -60     | 415.0     |
| KHDDH656 | White Hill | 591876 | 4876747 | 1311 | 0           | -60     | 420.6     |
| KHDDH657 | White Hill | 592000 | 4877501 | 1301 | 0           | -60     | 250.4     |
| KHDDH658 | White Hill | 592126 | 4877404 | 1303 | 0           | -60     | 550.0     |
| KHDDH659 | White Hill | 592001 | 4876900 | 1305 | 0           | -60     | 721.6     |
| KHDDH661 | White Hill | 592001 | 4876800 | 1310 | 0           | -60     | 897.1     |
| KHDDH662 | White Hill | 592500 | 4877122 | 1300 | 90          | -60     | 250.0     |
| KHDDH663 | White Hill | 592126 | 4877501 | 1299 | 0           | -60     | 305.5     |
| KHDDH664 | White Hill | 592039 | 4876821 | 1307 | 170         | -70     | 350.0     |
| KHDDH665 | White Hill | 592126 | 4876908 | 1303 | 0           | -60     | 700.0     |
| KHDDH666 | White Hill | 592126 | 4876785 | 1307 | 0           | -60     | 473.6     |
| KHDDH667 | White Hill | 592250 | 4876867 | 1304 | 0           | -65     | 450.0     |
| KHDDH668 | White Hill | 591561 | 4877271 | 1309 | 270         | -60     | 225.0     |
| KHDDH669 | White Hill | 592250 | 4877166 | 1301 | 0           | -65     | 525.0     |
| KHDDH670 | White Hill | 592250 | 4877036 | 1301 | 0           | -65     | 625.0     |
| KHDDH671 | White Hill | 592250 | 4876775 | 1304 | 0           | -65     | 250.0     |
| KHDDH673 | White Hill | 592250 | 4877450 | 1296 | 0           | -65     | 279.7     |
| KHDDH674 | White Hill | 592375 | 4877155 | 1299 | 0           | -65     | 501.6     |
| KHDDH676 | White Hill | 592375 | 4877051 | 1300 | 0           | -65     | 425.0     |
| KHDDH677 | White Hill | 592375 | 4876951 | 1299 | 0           | -65     | 375.2     |
| KHDDH679 | White Hill | 592375 | 4876849 | 1301 | 0           | -65     | 275.0     |
|          |            |        |         |      |             |         |           |

15.12.2025 Seite 4/14

| KHDDH743 White Hill 591398 4877077 1312 0 | -60 | 150.0 |
|-------------------------------------------|-----|-------|
| KHDDH744 White Hill 591398 4877176 1312 0 | -60 | 250.0 |
| KHDDH746 White Hill 591398 4877283 1309 0 | -60 | 185.0 |
| KHDDH747 White Hill 591396 4877382 1307 0 | -60 | 135.0 |
| KHDDH748 White Hill 591398 4877478 1304 0 | -60 | 85.0  |
| KHDDH749 White Hill 591626 4876851 1315 0 | -60 | 770.0 |

Table 2: Significant drill results

| Hala ID Draggart     | ["a" (m) | To (m) | Intonial (m) | ۸ (ص/ <del>د</del> ) | C. (0/) | CE ~ (0/) | ۸    |
|----------------------|----------|--------|--------------|----------------------|---------|-----------|------|
| ·                    |          |        | Interval (m) |                      |         |           |      |
| KHDDH651 White Hill  |          | 316    | 314          | 0.07                 | 0.17    | 0.20      | 0.39 |
| including            | 54       | 74     | 20           | 0.07                 | 0.24    | 0.27      | 0.54 |
| including            | 102      | 106    | 4            | 0.17                 | 0.24    | 0.33      | 0.64 |
| including<br>· · · · | 118.15   | 130    | 11.85        | 0.15                 | 0.29    | 0.37      | 0.72 |
| including            | 156      | 160.85 |              | 0.11                 | 0.24    | 0.29      | 0.57 |
| and                  | 326      | 416    | 90           | 0.06                 | 0.17    | 0.20      | 0.39 |
| including            | 374      | 388    | 14           | 0.10                 | 0.31    | 0.36      | 0.71 |
| KHDDH656 White Hill  |          | 91.25  | 5.85         | 0.30                 | 0.06    | 0.21      | 0.42 |
| and                  | 114.85   | 122.18 |              | 0.07                 | 0.07    | 0.11      | 0.21 |
| and                  | 224      | 420.6  | 196.6        | 0.07                 | 0.16    | 0.20      | 0.38 |
| including            | 280      | 296    | 16           | 0.11                 | 0.28    | 0.34      | 0.66 |
| including            | 346      | 362    | 16           | 80.0                 | 0.19    | 0.24      | 0.46 |
| KHDDH657 White Hill  | 1        | 233    | 232          | 0.10                 | 0.14    | 0.20      | 0.39 |
| including            | 1        | 19     | 18           | 0.26                 | 0.23    | 0.36      | 0.70 |
| including            | 87       | 103    | 16           | 0.20                 | 0.18    | 0.28      | 0.55 |
| KHDDH658 White Hill  | 2        | 29     | 27           | 0.17                 | 0.23    | 0.32      | 0.62 |
| including            | 2        | 21     | 19           | 0.20                 | 0.27    | 0.38      | 0.73 |
| and                  | 41       | 300    | 259          | 0.17                 | 0.22    | 0.31      | 0.61 |
| including            | 48.13    | 88     | 39.87        | 0.26                 | 0.37    | 0.50      | 0.98 |
| including            | 64.05    | 78     | 13.95        | 0.48                 | 0.50    | 0.74      | 1.46 |
| including            | 98       | 203    | 105          | 0.26                 | 0.28    | 0.41      | 0.81 |
| including            | 106.55   | 115    | 8.45         | 0.70                 | 0.75    | 1.10      | 2.16 |
| including            | 108      | 114    | 6            | 0.89                 | 0.82    | 1.27      | 2.49 |
| including            | 156      | 170    | 14           | 0.32                 | 0.29    | 0.46      | 0.89 |
| and                  | 314      | 322    | 8            | 80.0                 | 80.0    | 0.12      | 0.23 |
| and                  | 335      | 345    | 10           | 0.19                 | 0.05    | 0.14      | 0.28 |
| and                  | 379      | 481    | 102          | 0.05                 | 0.12    | 0.14      | 0.27 |
| KHDDH659 White Hill  | 40       | 56     | 16           | 0.04                 | 0.09    | 0.11      | 0.21 |
| and                  | 77       | 721.6  | 644.6        | 0.09                 | 0.21    | 0.25      | 0.49 |
| including            | 105      | 109    | 4            | 0.09                 | 0.28    | 0.33      | 0.64 |
| including            | 277      | 289.4  | 12.4         | 0.16                 | 0.22    | 0.30      | 0.60 |
| including            | 343      | 449    | 106          | 0.17                 | 0.29    | 0.37      | 0.73 |
| including            | 398.1    | 408    | 9.9          | 0.29                 | 0.31    | 0.46      | 0.90 |
| including            | 459      | 467    | 8            | 0.07                 | 0.13    | 0.16      | 0.32 |
| including            | 507      | 517    | 10           | 0.09                 | 0.25    | 0.29      | 0.57 |
| including            | 526.4    | 546.5  | 20.1         | 0.14                 | 0.35    | 0.43      | 0.84 |
| including            | 556      | 586    | 30           | 0.07                 | 0.35    | 0.38      | 0.75 |
| including            | 644      | 658    | 14           | 0.05                 | 0.25    | 0.28      | 0.54 |
| including            | 678      | 701    | 23           | 0.09                 | 0.30    | 0.34      | 0.67 |
| including            | 713.4    | 721.6  | 8.2          | 0.09                 | 0.30    | 0.35      | 0.68 |
| KHDDH661 White Hill  | 69.6     | 82     | 12.4         | 80.0                 | 0.06    | 0.09      | 0.18 |

15.12.2025 Seite 5/14

| and                     | 143    | 558.2  | 415.2  | 0.10 | 0.22 | 0.27 | 0.52 |
|-------------------------|--------|--------|--------|------|------|------|------|
| including               | 159    | 166    | 7      | 0.08 | 0.27 | 0.31 | 0.60 |
| including               | 302    | 308    | 6      | 0.12 | 0.25 | 0.31 | 0.61 |
| including               | 373    | 451    | 78     | 0.15 | 0.28 | 0.36 | 0.70 |
| including               | 465    | 524    | 59     | 0.22 | 0.37 | 0.49 | 0.95 |
| including               | 478    | 495.2  | 17.2   | 0.30 | 0.57 | 0.73 | 1.43 |
| including               | 482    | 490    | 8      | 0.41 | 0.70 | 0.91 | 1.78 |
| including               | 540    | 558.2  | 18.2   | 0.12 | 0.42 | 0.49 | 0.95 |
| including               | 554    | 558.2  | 4.2    | 0.18 | 0.63 | 0.72 | 1.41 |
| and                     | 570    | 895    | 325    | 0.11 | 0.33 | 0.38 | 0.74 |
| including               | 574.1  | 616    | 41.9   | 0.19 | 0.49 | 0.59 | 1.16 |
| including               | 576    | 608    | 32     | 0.22 | 0.55 | 0.66 | 1.29 |
| including               | 631.5  | 640    | 8.5    | 0.12 | 0.33 | 0.39 | 0.76 |
| including               | 654    | 658    | 4      | 0.10 | 0.31 | 0.36 | 0.71 |
| including               | 700.8  | 847    | 146.2  | 0.13 | 0.43 | 0.50 | 0.97 |
| including               | 757    | 763    | 6      | 0.28 | 0.65 | 0.79 | 1.55 |
| including               | 792.3  | 816    | 23.7   | 0.20 | 0.74 | 0.84 | 1.65 |
| including               | 794    | 806    | 12     | 0.26 | 0.87 | 1.00 | 1.96 |
| including               | 830    | 840    | 10     | 0.12 | 0.85 | 0.92 | 1.79 |
| including               | 834    | 838    | 4      | 0.16 | 1.20 | 1.28 | 2.50 |
| KHDDH662 White Hill     |        | 206    | 10     | 0.06 | 0.06 | 0.10 | 0.19 |
| KHDDH663 White Hill     |        | 171    | 171    | 0.13 | 0.21 | 0.27 | 0.53 |
| including               | 0      | 30     | 30     | 0.35 | 0.38 | 0.56 | 1.09 |
| including               | 1      | 9      | 8      | 0.68 | 0.60 | 0.95 | 1.85 |
| including               | 1      | 5.8    | 4.8    | 0.91 | 0.64 | 1.10 | 2.16 |
| including               | 40     | 60     | 20     | 0.12 | 0.24 | 0.30 | 0.58 |
| including               | 96     | 102    | 6      | 0.10 | 0.28 | 0.34 | 0.66 |
| and                     | 183    | 187    | 4      | 0.05 | 0.10 | 0.12 | 0.24 |
| and                     | 199    | 241    | 42     | 0.05 | 0.10 | 0.12 | 0.25 |
| and                     | 284    | 292    | 8      | 0.03 | 0.06 | 0.10 | 0.20 |
| KHDDH664 White Hill     |        | 182.7  | 15.7   | 0.03 | 0.07 | 0.09 | 0.20 |
|                         | 243    | 305    | 62     | 0.03 | 0.07 | 0.09 | 0.17 |
| and                     |        |        |        |      | 0.11 | 0.13 |      |
| and KHDDH665 White Hill | 315    | 350    | 35     | 0.05 |      |      | 0.31 |
|                         |        | 52     | 4      | 0.04 | 0.10 | 0.12 | 0.23 |
| and                     | 66     | 70     | 4      | 0.05 | 0.14 | 0.16 | 0.32 |
| and                     | 80     | 813    | 733    | 0.15 | 0.31 | 0.39 | 0.77 |
| including<br>· · · ·    | 114    | 120    | 6      | 0.11 | 0.33 | 0.38 | 0.75 |
| including<br>· · · ·    | 218    | 228    | 10     | 0.12 | 0.22 | 0.28 | 0.54 |
| including<br>· · · ·    | 240.5  | 400.5  | 160    | 0.22 | 0.30 | 0.41 | 0.80 |
| including<br>           | 353    | 361    | 8      | 0.30 | 0.55 | 0.70 | 1.37 |
| including<br>           | 411.3  | 622    | 210.7  | 0.23 | 0.43 | 0.55 | 1.07 |
| including               | 462.8  | 474    | 11.2   | 0.27 | 0.48 | 0.62 | 1.21 |
| including               | 490    | 546    | 56     | 0.37 | 0.66 | 0.85 | 1.67 |
| including               | 521    | 544    | 23     | 0.46 | 0.92 | 1.16 | 2.26 |
| including               | 564    | 572    | 8      | 0.28 | 0.71 | 0.85 | 1.67 |
| including               | 582    | 604    | 22     | 0.23 | 0.55 | 0.67 | 1.32 |
| including               | 632    | 646.2  | 14.2   | 0.09 | 0.31 | 0.35 | 0.69 |
| including               | 662.95 | 797    | 134.05 | 0.09 | 0.40 | 0.44 | 0.87 |
| including               | 682    | 696    | 14     | 0.16 | 0.53 | 0.61 | 1.20 |
| including               | 741    | 746.76 | 5.76   | 0.13 | 0.99 | 1.05 | 2.06 |
| including               | 741    | 745    | 4      | 0.14 | 1.09 | 1.16 | 2.28 |
| KHDDH666 White Hill     | 87.35  | 98.1   | 10.75  | 0.03 | 80.0 | 0.09 | 0.18 |

15.12.2025 Seite 6/14

| and                     | 166    | 323.2      | 157.2     | 0.09         | 0.19         | 0.23         | 0.45         |
|-------------------------|--------|------------|-----------|--------------|--------------|--------------|--------------|
| including               | 233    | 239        | 6         | 0.12         | 0.33         | 0.39         | 0.76         |
| including               | 252    | 258        | 6         | 0.12         | 0.31         | 0.37         | 0.72         |
| including               | 268    | 318.05     |           | 0.16         | 0.27         | 0.36         | 0.70         |
| including               | 283.15 | 301        | 17.85     | 0.20         | 0.34         | 0.45         | 0.87         |
| and                     | 332.25 | 444.3      | 112.05    | 0.15         | 0.30         | 0.38         | 0.74         |
| including               | 336    | 366.6      | 30.6      | 0.17         | 0.36         | 0.45         | 0.87         |
| including               | 378    | 416.5      | 38.5      | 0.21         | 0.37         | 0.48         | 0.94         |
| including               | 430    | 443        | 13        | 0.12         | 0.32         | 0.38         | 0.74         |
| KHDDH667 White Hill     |        | 218.7      | 206.7     | 0.09         | 0.23         | 0.27         | 0.53         |
| including               | 30     | 34         | 4         | 0.21         | 0.22         | 0.33         | 0.65         |
| including               | 72     | 94         | 22        | 0.20         | 0.71         | 0.81         | 1.58         |
| including               | 82     | 94         | 12        | 0.32         | 1.12         | 1.29         | 2.52         |
| including               | 82     | 92         | 10        | 0.35         | 1.23         | 1.41         | 2.75         |
| including               | 104    | 121        | 17        | 0.09         | 0.22         | 0.27         | 0.52         |
| KHDDH668 White Hill     |        | 494.1      | 493.1     | 0.08         | 0.22         | 0.21         | 0.42         |
| including               | 132    | 144        | 12        | 0.16         | 0.17         | 0.31         | 0.42         |
| including               | 212    | 219        | 7         | 0.10         | 0.23         | 0.27         | 0.54         |
| including               | 231    | 241        | 10        | 0.12         | 0.24         | 0.30         | 0.58         |
| including               | 298    | 328        | 30        | 0.11         | 0.24         | 0.36         | 0.70         |
| including               | 356    | 360        | 4         | 0.13         | 0.26         | 0.32         | 0.63         |
| including               | 389    | 460        | 71        | 0.13         | 0.26         | 0.32         | 0.63         |
| KHDDH669 White Hill     |        | 600.5      | 597.7     | 0.11         | 0.20         | 0.43         | 0.84         |
| and                     | 19     | 38         | 19        | 0.22         | 0.32         | 0.43         | 0.53         |
| and                     | 48     | 538        | 490       | 0.25         | 0.17         | 0.27         | 0.92         |
| including               | 95.6   | 138        | 42.4      | 0.23         | 0.41         | 0.58         | 1.14         |
| including               | 148    | 160        | 12        | 0.34         | 0.40         | 0.58         | 1.13         |
| including               | 198    | 209        | 11        | 0.35         | 0.43         | 0.61         | 1.13         |
| including               | 308    | 347.6      | 39.6      | 0.33         | 0.45         | 0.70         | 1.13         |
| including               | 312    | 316        | 4         | 1.03         | 0.45         | 1.19         | 2.32         |
| · ·                     | 376.1  | 437        | 60.9      | 0.30         | 0.66         | 0.56         | 1.10         |
| including               | 506    | 514        | 8         |              |              |              | 1.10         |
| including               | 548    | 598        | 50        | 0.29<br>0.08 | 0.53<br>0.23 | 0.68<br>0.27 | 0.54         |
| and KHDDH670 White Hill |        | 763        | 762.7     | 0.08         | 0.23         | 0.42         | 0.83         |
|                         | 16     | 20         | 4         | 0.21         | 0.32         | 0.42         | 0.65         |
| including               | 67     | 202        | 135       | 0.13         | 0.27         | 0.33         | 0.90         |
| including               | 71     |            | 25.6      |              | 0.34         | 0.46         |              |
| including               |        | 96.6       | 119.7     | 0.38         |              |              | 1.23         |
| including               | 217    | 336.7      |           | 0.26         | 0.31<br>0.34 | 0.45         | 0.87         |
| including               | 265    | 287<br>634 | 22<br>288 | 0.41         | 0.34         | 0.56<br>0.49 | 1.09<br>0.97 |
| including               | 346    |            |           | 0.23         |              |              |              |
| including               | 354    | 369.3      | 15.3      | 0.28         | 0.39         | 0.53         | 1.03         |
| including               | 434    | 455<br>533 | 21        | 0.25         | 0.41         | 0.54         | 1.06         |
| including               | 511.3  | 523        | 11.7      | 0.33         | 0.53         | 0.70         | 1.38         |
| including               | 564    | 622        | 58        | 0.33         | 0.55         | 0.72         | 1.41         |
| including               | 608    | 614        | 6         | 0.41         | 0.70         | 0.91         | 1.78         |
| including               | 656    | 684        | 28        | 0.11         | 0.45         | 0.51         | 0.99         |
| including               | 672    | 682        | 10        | 0.18         | 0.76         | 0.85         | 1.66         |
| including               | 672    | 680        | 8         | 0.19         | 0.76         | 0.86         | 1.68         |
| including               | 713    | 745        | 32        | 0.62         | 0.45         | 0.76         | 1.49         |
| including               | 731    | 741        | 10        | 0.12         | 0.70         | 0.76         | 1.49         |
| KHDDH671 White Hill     |        | 248        | 182       | 0.05         | 0.13         | 0.15         | 0.30         |
| KHDDH673 White Hill     | ı 1    | 42.5       | 41.5      | 0.11         | 0.18         | 0.23         | 0.46         |

15.12.2025 Seite 7/14

| including           | 1      | 13.2   | 12.2  | 0.20 | 0.35 | 0.45 | 88.0 |
|---------------------|--------|--------|-------|------|------|------|------|
| and                 | 61.9   | 197    | 135.1 | 0.04 | 0.12 | 0.14 | 0.27 |
| and                 | 207    | 268    | 61    | 0.05 | 0.10 | 0.12 | 0.23 |
| KHDDH674 White Hill | 1.6    | 95.4   | 93.8  | 0.13 | 0.25 | 0.31 | 0.61 |
| including           | 3      | 47     | 44    | 0.15 | 0.26 | 0.33 | 0.65 |
| including           | 72     | 95.4   | 23.4  | 0.13 | 0.28 | 0.34 | 0.67 |
| and                 | 104.68 | 117.92 | 13.24 | 0.19 | 0.35 | 0.44 | 0.87 |
| and                 | 174    | 194.4  | 20.4  | 0.09 | 0.16 | 0.21 | 0.40 |
| including           | 176.4  | 194.4  | 18    | 0.09 | 0.17 | 0.22 | 0.42 |
| and                 | 209.6  | 454    | 244.4 | 80.0 | 0.16 | 0.20 | 0.40 |
| including           | 209.6  | 225    | 15.4  | 0.16 | 0.25 | 0.33 | 0.64 |
| including           | 365    | 375    | 10    | 0.09 | 0.19 | 0.23 | 0.45 |
| including           | 415    | 431    | 16    | 0.14 | 0.20 | 0.27 | 0.52 |
| and                 | 465.4  | 476    | 10.6  | 0.06 | 0.11 | 0.14 | 0.28 |
| and                 | 486    | 501.6  | 15.6  | 0.30 | 0.22 | 0.37 | 0.72 |
| KHDDH676 White Hill | 0      | 56.15  | 56.15 | 0.17 | 0.28 | 0.36 | 0.71 |
| KHDDH677 White Hill | 3.2    | 119    | 115.8 | 0.17 | 0.30 | 0.39 | 0.76 |
| including           | 9.3    | 15.7   | 6.4   | 0.09 | 0.39 | 0.43 | 0.84 |
| including           | 28     | 44     | 16    | 0.18 | 0.33 | 0.42 | 0.83 |
| including           | 40     | 44     | 4     | 0.29 | 0.59 | 0.74 | 1.44 |
| including           | 62     | 117    | 55    | 0.24 | 0.37 | 0.49 | 0.96 |
| including           | 84     | 105    | 21    | 0.29 | 0.46 | 0.61 | 1.19 |
| KHDDH679 White Hill | 5      | 167    | 162   | 0.05 | 0.15 | 0.18 | 0.34 |
| including           | 54.2   | 62.6   | 8.4   | 0.14 | 0.31 | 0.38 | 0.75 |
|                     |        |        |       |      |      |      |      |

KHDDH749 White Hill Assays pending KHDDH742 White Hill Assays pending KHDDH742 White Hill Assays pending KHDDH743 White Hill Assays pending KHDDH744 White Hill Assays pending KHDDH746 White Hill Assays pending KHDDH747 White Hill Assays pending KHDDH748 White Hill Assays pending KHDDH749 White Hill Assays pending KHDDH750 White Hill Assays pending KHDDH751 White Hill Assays pending KHDDH756 White Hill Assays pending KHDDH756 White Hill Assays pending

Appendix 2: Statements and Disclaimers

## Competent Person Statement

The information in this announcement that relates to Mineral Resources is based on information compiled by Mr Robert Spiers, who is responsible for the Mineral Resource estimate. Mr Spiers is a full time Principal Geologist employed by Spiers Geological Consultants (SGC) and is a Member of the Australian Institute of Geoscientists. He has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as the Qualified Person as defined in the CIM Guidelines and National Instrument 43-101 and as a Competent Person under JORC Code 2012. Mr Spiers consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

The information in this announcement that relates to exploration results is based on information compiled by Dr Andrew Stewart, who is responsible for the exploration data, comments on exploration target sizes, QA/QC and geological interpretation and information. Dr Stewart, who is an employee of Xanadu and is a

15.12.2025 Seite 8/14

Member of the Australasian Institute of Geoscientists, has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as the Competent Person as defined in the 2012 Edition of the *Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves* and the *National Instrument 43-101*. Dr Stewart consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Mineral Resources and Ore Reserves Reporting Requirements

The 2012 Edition of the *Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves* (the JORC Code 2012) sets out minimum standards, recommendations and guidelines for Public Reporting in Australasia of Exploration Results, Mineral Resources and Ore Reserves. The Information contained in this Announcement has been presented in accordance with the JORC Code 2012.

The information in this Announcement relates to the exploration results previously reported in ASX Announcements which are available on the Xanadu website at:

https://www.xanadumines.com/site/investor-centre/asx-announcements

The Company is not aware of any new, material information or data that is not included in those market announcements.

## Copper Equivalent Calculations

The copper equivalent (CuEq) calculation represents the total metal value for each metal, multiplied by the conversion factor, summed and expressed in equivalent copper percentage with a metallurgical recovery factor applied.

Copper equivalent (CuEq) grade values were calculated using the formula: CuEq = Cu + Au \* 0.60049 \* 0.86667.

Where Cu - copper grade (%); Au - gold grade (g/t); 0.60049 - conversion factor (gold to copper); 0.86667 - relative recovery of gold to copper (86.67%).

The copper equivalent formula was based on the following parameters (prices are in USD): Copper price 3.4 \$/lb; Gold price 1400 \$/oz; Copper recovery 90%; Gold recovery 78%; Relative recovery of gold to copper = 78% / 90% = 86.67%.

## Forward-Looking Statements

Certain statements contained in this Announcement, including information as to the future financial or operating performance of Xanadu and its projects may also include statements which are 'forward?looking statements' that may include, amongst other things, statements regarding targets, estimates and assumptions in respect of mineral reserves and mineral resources and anticipated grades and recovery rates, production and prices, recovery costs and results, capital expenditures and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions. These 'forward-looking statements' are necessarily based upon a number of estimates and assumptions that, while considered reasonable by Xanadu, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies and involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward?looking statements.

Xanadu disclaims any intent or obligation to update publicly or release any revisions to any forward?looking

15.12.2025 Seite 9/14

statements, whether as a result of new information, future events, circumstances or results or otherwise after the date of this Announcement or to reflect the occurrence of unanticipated events, other than required by the Corporations Act 2001 (Cth) and the Listing Rules of the Australian Securities Exchange (ASX) and Toronto Stock Exchange (TSX). The words 'believe', 'expect', 'anticipate', 'indicate', 'contemplate', 'target', 'plan', 'intends', 'continue', 'budget', 'estimate', 'may', 'will', 'schedule' and similar expressions identify forward?looking statements.

All 'forward?looking statements' made in this Announcement are qualified by the foregoing cautionary statements. Investors are cautioned that 'forward?looking statements' are not guarantee of future performance and accordingly investors are cautioned not to put undue reliance on 'forward?looking statements' due to the inherent uncertainty therein.

For further information please visit the Xanadu Mines' Website at www.xanadumines.com.

Appendix 3: Kharmagtai Table 1 (JORC 2012)

Set out below is Section 1 and Section 2 of Table 1 under the JORC Code, 2012 Edition for the Kharmagtai project. Data provided by Xanadu. This Table 1 updates the JORC Table 1 disclosure dated 8 December 2021.

JORC TABLE 1 - SECTION 1 - SAMPLING TECHNIQUES AND DATA

| (Criteria in this section apply to all succe | eding sections).                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                     | Commentary                                                                                                                                                                                                                                                                                                                                                             |
| Sampling techniques                          | <ul> <li>Representative ½ core samples were split from PQ, HQ &amp; N</li> <li>The orientation of the cut line is controlled using the core ori</li> <li>Sample intervals are defined and subsequently checked by</li> <li>Reverse Circulation (RC) chip samples are ¼ splits from one</li> <li>RC samples are uniform 2m samples formed from the comb</li> </ul>      |
| Drilling techniques                          | <ul> <li>The Mineral Resource Estimation has been based upon dian</li> <li>All drill core drilled by Xanadu has been oriented using the "</li> </ul>                                                                                                                                                                                                                   |
| Drill sample recovery                        | <ul> <li>Diamond drill core recoveries were assessed using the stand</li> <li>Diamond core recoveries average 97% through mineralisation</li> <li>Overall, core quality is good, with minimal core loss. Where</li> <li>RC recoveries are measured using whole weight of each 1mm</li> <li>Analysis of recovery results vs grade shows no significant tree.</li> </ul> |
| La casina                                    | <ul> <li>All drill core is geologically logged by well-trained geologists</li> <li>Logging of lithology, alteration and mineralogy is intrinsically</li> </ul>                                                                                                                                                                                                         |

Logging

- Logging of lithology, alteration and mineralogy is intrinsically
- Drill core is also systematically logged for both geotechnical
- Both wet and dry core photos are taken after core has been

15.12.2025 Seite 10/14

All drill core samples are ½ core splits from either PQ, HQ o
Core is appropriately split (onsite) using diamond core saws

 The diamond saws are regularly flushed with water to minim A field duplicate ¼ core sample is collected every 30th samp Sub-sampling techniques and sample preparation Routine sample preparation and analyses of DDH samples All samples were prepared to meet standard quality control ALS Mongolia Geochemistry labs quality management syste • The sample support (sub-sample mass and comminution) is All samples were routinely assayed by ALS Mongolia for gol Au is determined using a 25g fire assay fusion, cupelled to c All samples were also submitted to ALS Mongolia for the 48 Quality assurance has been managed by insertion of approp Quality of assay data and laboratory tests Assay results outside the optimal range for methods were re Ore Research Pty Ltd certified copper and gold standards had QC monitoring is an active and ongoing processes on batch Prior to 2014: Cu, Ag, Pb, Zn, As and Mo were routinely det All assay data QA/QC is checked prior to loading into XAM's The data is managed by XAM geologists. • The data base and geological interpretation is managed by Verification of sampling and assaying Check assays are submitted to an umpire lab (SGS Mongoli No twinned drill holes exist. • There have been no adjustments to any of the assay data. • Diamond drill holes have been surveyed with a differential g The grid system used for the project is UTM WGS-84 Zone Location of data points • Historically, Eastman Kodak and Flexit electronic multi-shot More recently (since September 2017), a north-seeking gyro The project Digital Terrain Model (DTM) is based on 1m cor Holes spacings range from <50m spacings within the core of</li> Holes range from vertical to an inclination of -60 degrees de • The data spacing and distribution is sufficient to establish ar Data spacing and distribution Holes have been drilled to a maximum of 1,304m vertical de • The data spacing and distribution is sufficient to establish ge Drilling is conducted in a predominantly regular grid to allow Orientation of data in relation to geological structure Scissor drilling, as well as some vertical and oblique drilling, Samples are delivered from the drill rig to the core shed twice Samples are dispatched from site in locked boxes transported Sample security Sample shipment receipt is signed off at the Laboratory with Samples are then stored at the lab and returned to a locked Internal audits of sampling techniques and data management External reviews and audits have been conducted by the fol 2012: AMC Consultants Pty Ltd. was engaged to conduct ar Audits or reviews 2013: Mining Associates Ltd. was engaged to conduct an In 2018: CSA Global reviewed the entire drilling, logging, samp

JORC TABLE 1 - SECTION 2 - REPORTING OF EXPLORATION RESULTS

(Criteria in this section apply to all succeeding sections).

15.12.2025 Seite 11/14

#### Criteria

## Mineral tenement and land tenure status

Exploration done by other parties

## Geology

## Drill hole Information

## Commentary

- The Project comprises 2 Mining Licences (MV-17129A Oyut Ulaan and (MV
  - Xanadu now owns 90% of Vantage LLC, the 100% owner of the Oyut
- The Kharmagtai mining license MV-17387A is 100% owned by Oyut L • The Mongolian Minerals Law (2006) and Mongolian Land Law (2002) gover
- Previous exploration at Kharmagtai was conducted by Quincunx Ltd, Ivanho
- Previous exploration at Red Mountain (Oyut Ulaan) was conducted by Ivanh
- The mineralisation is characterised as porphyry copper-gold type.
- Porphyry copper-gold deposits are formed from magmatic hydrothermal flui
- Diamond drill holes are the principal source of geological and grade data for • See figures in this ASX/TSX Announcement.
- The CSAMT data was converted into 2D line data using the Zonge CSAMT
- A nominal cut-off of 0.1% CuEq is used in copper dominant systems for idea
- A nominal cut-off of 0.1g/t eAu is used in gold dominant systems like Golder
- Maximum contiguous dilution within each intercept is 9m for 0.1%, 0.3%, 0.
- Most of the reported intercepts are shown in sufficient detail, including maxi
- Informing samples have been composited to two metre lengths honouring the

The copper equivalent (CuEq) calculation represents the total metal value for each

Copper equivalent (CuEq) grade values were calculated using the following formu

CuEq = Cu + Au \* 0.62097 \* 0.8235,

Gold Equivalent (eAu) grade values were calculated using the following formula:

eAu = Au + Cu / 0.62097 \* 0.8235.

# Data Aggregation methods

Where:

Cu - copper grade (%)

Au - gold grade (g/t)

0.62097 - conversion factor (gold to copper)

0.8235 - relative recovery of gold to copper (82.35%)

The copper equivalent formula was based on the following parameters (prices are

- Copper price 3.1 \$/lb (or 6834 \$/t)
- Gold price 1320 \$/oz
- Copper recovery 85%
- Gold recovery 70%
- Relative recovery of gold to copper = 70% / 85% = 82.35%.

Relationship between mineralisation on widths

and intercept lengths

- Mineralised structures are variable in orientation, and therefore drill orientat Exploration results have been reported as an interval with 'from' and 'to' state

15.12.2025 Seite 12/14

| Diagrams                                     | <ul> <li>See figures in the body of this ASX/TSX Announcement.</li> </ul>                                                                                                         |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Balanced                                     | <ul> <li>Resources have been reported at a range of cut-off grades, above a minimu</li> </ul>                                                                                     |
| reporting Other substantive exploration data | Extensive work in this area has been done and is reported separately.                                                                                                             |
| Further<br>Work                              | <ul> <li>The mineralisation is open at depth and along strike.</li> <li>Current estimates are restricted to those expected to be reasonable for open and along strike.</li> </ul> |

## JORC TABLE 1 - SECTION 3 - ESTIMATION AND REPORTING OF MINERAL RESOURCES

Mineral Resources are not reported so this is not applicable to this Announcement. Please refer to the Company's ASX Announcement dated 8 December 2021 for Xanadu's most recent reported Mineral Resource Estimate and applicable Table 1, Section 3.

Exploration on going.

## JORC TABLE 1 - SECTION 4 - ESTIMATION AND REPORTING OF ORE RESERVES

Ore Reserves are not reported so this is not applicable to this Announcement.

Photos accompanying this announcement are available at

https://www.globenewswire.com/NewsRoom/AttachmentNg/13963781-e5b0-4956-b483-39fd86f0b20a

https://www.globenewswire.com/NewsRoom/AttachmentNg/66598f3c-2796-4008-849b-dae930011e75

https://www.globenewswire.com/NewsRoom/AttachmentNg/1fa83460-8471-4cee-b22f-4b06d16cc9c5

https://www.globenewswire.com/NewsRoom/AttachmentNg/f63a1e17-4bad-4159-bda4-f01d18c216aa

15.12.2025 Seite 13/14

<sup>&</sup>lt;sup>1</sup> ASX/TSX Announcement 7 June 2023 - New Higher-Grade Zones Found in Kharmagtai Infill Drilling

<sup>&</sup>lt;sup>2</sup> ASX/TSX Announcement 6 April 2022 - Scoping Study - Kharmagtai Copper-Gold Project

<sup>&</sup>lt;sup>3</sup> ASX/TSX Announcement 8 December 2021 - Kharmagtai Resource Grows to 1.1 billion Tonnes

<sup>&</sup>lt;sup>4</sup> ASX/TSX Announcement 6 April 2022 - Scoping Study - Kharmagtai Copper-Gold Project

<sup>&</sup>lt;sup>5</sup> ASX/TSX Announcement 9 August 2023 - Further Higher-Grade Infill Drilling Results at Stockwork Hill

<sup>&</sup>lt;sup>6</sup> ASX/TSX Announcement 13 March 2023 - Zijin & Xanadu Transaction Completed & Kharmagtai PFS underway

<sup>&</sup>lt;sup>7</sup> ASX/TŠX Announcement 8 December 2021 - Kharmagtai Resource Grows to 1.1 billion Tonnes

<sup>&</sup>lt;sup>8</sup> ASX/TSX Announcement 08 December 2021 - Kharmagtai resource grows to 1.1 billion tonnes, containing 3Mt Cu and 8Moz Au

Dieser Artikel stammt von <u>Minenportal.de</u>
Die URL für diesen Artikel lautet:
<a href="https://www.minenportal.de/artikel/515059--High-Grade-Core-Shaping-up-at-White-Hill.html">https://www.minenportal.de/artikel/515059--High-Grade-Core-Shaping-up-at-White-Hill.html</a>

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere <a href="AGB/Disclaimer">AGB/Disclaimer</a>!

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt! Alle Angaben ohne Gewähr! Copyright © by Minenportal.de 2007-2025. Es gelten unsere <u>AGB</u> und <u>Datenschutzrichtlinen</u>.

15.12.2025 Seite 14/14