G Mining Ventures Reports New High-Grade Discovery at Oko West and Extension of Mineralization at Gurupi

09.09.2025 | CNW

BROSSARD, QC, Sept. 9, 2025 /CNW/ - G Mining Ventures Corp. ("GMIN" or the "Corporation") (TSX:GMIN, OTCQX: pleased to provide an exploration update, including significant exploration results from its Oko West Gold Project ("Oko Guyana and its Gurupi Project ("Gurupi") in Brazil.

(All grade reported as grams per tonnes of gold "g/t Au" and length in meters "m".)

Key Highlights at Oko West

At Oko West, recent drilling guided by a newly developed Splay Model along the main mineralized zone have delivered intercepts, confirming both near-mine growth and regional discovery potential (Figures 1 to 3; Table 1). Recent drilling returned:

- The discovery of the second high grade plunge of mineralization beyond the current pit limits to the north at Oko 1 ("B1"), including:
 - 2.9 m at 37.85 g/t Au (OKWD25-518)
 - 21.0 m at 3.80 g/t Au (OKWR25-1839)
 - 14.0 m at 4.38 g/t Au (OKWD25-533)
 15.5 m at 3.53 g/t Au (OKWD25-533)
- Development of a mineralized Splay Model within the principal mineralized zone, capturing the structural complex main shear system and delineating vectors for exploration potential beyond the current reserve pit. Results include
 - 11.9 m at 5.26 g/t Au (OKWD25-545)
 - 14.0 m at 1.10 g/t Au (OKWD25-516)

Key Highlights at Gurupi

Since acquiring Gurupi at the end of 2024, the Corporation has made progress in advancing permitting while restarted exploration work to prepare for the launch a robust exploration drilling program across its highly prospective land package 5 to 7; Table 2). Key results from trenching include:

- Extension of the known mineralization 2 km north of Chega Tudo deposit at the Grodiocal target with trenches inc
 - 9.0 m at 3.52 g/t Au (GMAMT-25-008)
 - 3.0 m at 3.63 g/t Au (GMAMT-25-005)
 - 3.0 m at 2.09 g/t Au (GMAMT-25-001)
 - 7.0 m @ 0.97 g/t Au (GMAMT-25-005)
 - 5.0 m @ 0.89 g/t Au (GMAMT-25-001)
- Relaunch of regional exploration program at Gurupi with expected drilling in Q4-2025.

"Exploration at Oko West continues to expand our understanding of the deposit and reinforces the robust economics de in the Feasibility Study, while at Gurupi, trenching results validate near-surface mineralization, demonstrating the high party and the feasibility Study, while at Gurupi, trenching results validate near-surface mineralization, demonstrating the high party and the feasibility Study, while at Gurupi, trenching results validate near-surface mineralization, demonstrating the high party and the feasibility Study. of the large land package" said Julie-Anaïs Debreil, Vice President Geology & Resources. "High-grade intercepts confi West's exceptional potential and support future mine life extensions. At Gurupi recent work provide the confidence to la first drill program later this year. Combined with Tocantinzinho's robust cash flow, our pipeline of high-quality projects fi positions GMIN to become the next intermediate gold producer."

Oko West Project, Guyana

New Ore Shoot Discovery

06.12.2025 Seite 1/9 Since the completion of Feasibility Study ("FS") drilling, the Corporation has completed an additional 9,968 m of core of focused on exploring mineralized extensions outside the known reserve. Results to date have led to the discovery of the high grade plunge of mineralization beyond the current pit limits to the north (B1, Figure 1). This newly discovered plun near surface and outside of the existing pit, and contains grades that could be easily integrated into the existing open punderground mine plan (Figure 2). This new ore shoot discovery demonstrates that the Oko West Deposit continues to

Splay Model Success

Drilling also aimed to confirm a newly developed Splay Model, based on detailed structural observations (Figure 3). The smaller structures that branch off a main shear zone, acting like natural off-ramps that redirect stress and mineral-rich for surrounding rock. These offshoots can form highly prospective zones for exploration. The Splay Model integrates validate structural insights, providing a framework to better target mineralization occurring outside the main vein systems. The roughly prospective zones for exploration. The Splay Model integrates validately structural insights, providing a framework to better target mineralization occurring outside the main vein systems. The roughly prospective zones for exploration.

The purpose of this model revision is to better target mineralization around the pit. This has proven to be successful with veins demonstrating continuity outside of the known pit (Figure 3).

Highlights of intercepts include the following listed below, with details provided in Table 1.

- 11.9 m at 5.26 g/t Au (OKWD25-545, AU_2FW)
- 14.0 m at 1.10 g/t Au (OKWD25-516, ODZ)
- ▼ 7.0 m at 2.08 g/t Au (OKWD25-545, AU_3HW)
- 5.0 m at 2.22 g/t Au (OKWR25-1838, Splay_FW2) * reverse circulation ("RC") drilling hole
- 6.1 m at 1.73 g/t Au (OKWD25-528, CTZ)

Regional Exploration

As construction ramps up, exploration efforts will continue to pursue regional targets with a fly camp. The NW extension located 10 km northwest of the Oko West deposit presents a strong soil anomaly. Early interpretations from trenching herevealed cross-cutting mineralized structures, dominated by extensional, NW-trending sulfide-rich quartz veins and con NNE-oriented shear zones, suggesting a complex structural regime influencing fluid flow and mineral deposition. These are closely associated with the main foliation patterns within the volcano-sedimentary sequence and are further influence broader granitoid intrusive system. A total of 6,300 m of trenching and reverse circulation drilling is planned, which may by diamond drilling depending on success, to provide a better understanding of this mineralized system and help refine interpretation (Figure 4).

Gurupi Project, Brazil

Since acquiring the Gurupi Project, GMIN has moved quickly to: consolidate historical datal reinitiate field work; conduct sampling and subsequent trenching in prospective areas; engage with various stakeholders; and restart the permitting A recent court ruling annulled outdated licenses issued to a prior operator, opening the door for a renewed exploration development strategy.

Gold mineralization in the Gurupi Belt is controlled by the Tentugal shear zone, a 15-30 km wide and ~120 km long sini strike-slip corridor, where deformation focused in carbonaceous schists and volcanic and volcanoclastic rocks (Figure 5 deposits along this trend is hosted in quartz-carbonate-sulfide veins and disseminated pyrite, with alteration marked by carbonatization, and sulfidation. Mineralization is consistent with classic orogenic gold systems.

Gurupi consists of 47 contiguous tenements covering ~1,900 km² along the Tentugal shear zone, with current mineral r including 1.83 Moz of indicated resources (43.5 Mt at 1.31 g/t Au) and 0.77 Moz of inferred resources (18.5 Mt at 1.29 g hosted in the Blanket, Contact (Cipoeiro area), Chega Tudo and Mandiocal (Chega Tudo area) deposits. These deposi strong expansion potential as limited drilling outside of the resource areas has been completed.

Infill soil sampling completed in 2025 have highlighted three main mineralized structures 2 km north of known mineralized

06.12.2025 Seite 2/9

Mandiocal (Chega Tudo). Follow up trenching carried out over these anomalies has confirmed the district's exploration (Figure 6, Table 2).

Expanded 2025 Exploration Program

An expanded 2025 budget of USD \$6-8 million has been approved (previously USD \$2-4 million - see news release da 20, 2025), with the primary objective of testing the continuity at depth of the surface mineralized structure highlighted by trenching at Grodiocal. A total of 10,000 m of RC drilling is currently planned, of which 7,500 m is expected to be complyear-end. This will be complemented by regional soil sampling and trenching aimed at generating and advancing new to

This RC drilling is located outside of the claims subject to the past injunction as we expect the permitting process to be in Q1-2026 in these claims (Figure 7). Diamond drilling (DD) is planned with a total of 8,500 m focused on the Cipoiero This program will commence soon after the receipt of all required permits. The long-term exploration strategy focuses on the deposits across this highly prospective property to drive significant resource growth.

Sampling and Quality Assurance/Quality Control ("QA/QC") Disclosure

Oko West assay results are from core samples sent to Actlabs certified laboratory in Georgetown, Guyana for preparation analysis utilizing both fire assay and ICP methods. For a complete description of Oko West's sample preparation, analy methods and QA/QC procedures refer to the technical report with an effective date of April 28, 2025, entitled "Feasibilit 43-101 - Technical Report, Oko West Gold Project".

Gurupi assay results are prepared at ALS Chemex in Parauapebas, Brazil, and analyzed at an accredited laboratory in using fire assay and Inductively Coupled Plasma ("ICP") methods. Standard preparation includes crushing to 70% pass and pulverizing 250 g to 85% passing 75 μm. Gold assays are performed using a 30 g fire assay with atomic absor with samples returning >10 g/t Au re-assayed by fire assay with gravimetric finish. When visible gold is present, a 1 kg pulverized to 95% passing 106 μm and subjected to screen fire assay for coarse gold evaluation. Duplicate analyse completed for added quality control. For a complete description of Gurupi's sample preparation, analytical methods and procedures refer to the technical report for the Gurupi project dated April 8, 2025 (effective date February 3, 2025), entities the sample propagation of the Gurupi Project."

The Corporation maintains a rigorous QA/QC program, including the routine insertion of certified standards, blanks, and duplicates (approximately 10% of all samples). QA/QC results are closely monitored, and any failures are re-assayed to reliability of reported results.

Qualified Person ("QP")

The technical content of this press release has been reviewed by Julie-Anaïs Debreil, Vice President Geology & Resou GMIN, a QP as defined in National Instrument NI 43-101 ("NI 43-101"), on behalf of the Corporation and has approved technical disclosure contained in this news release.

About G Mining Ventures Corp.

G Mining Ventures Corp. is a mining company engaged in the acquisition, exploration and development of precious me to capitalize on the value uplift from successful mine development. GMIN is well-positioned to grow into the next mid-tie metals producer by leveraging strong access to capital and proven development expertise. GMIN is currently anchored Tocantinzinho Mine ("TZ") in Brazil, supported by the Gurupi Project in Brazil and the Oko West Project in Guyana - all significant exploration upside and located in mining-friendly jurisdictions. GMIN trades on the TSX under the symbol "G

Additional Information

For further information on GMIN, please visit the website at www.gmin.gold.

Cautionary Statement on Forward-Looking Information

06.12.2025 Seite 3/9

All statements, other than statements of historical fact, contained in this press release constitute "forward-looking information" and "forward-looking statements" within the meaning of certain securities laws and are based on expectations and projections as of the date of this press release. Forward-looking statements contained in this press release include, without limitation, those related to (i) the confirmation of both near-mine growth (namely beyond the current reserve pit) and regional discovery potential at Oko West; (ii) the expected drilling at Gurupi in Q4-2025; (iii) the continuity of known mineralization along the main deformation zone beyond the Oko West pit limits; (iv) the construction ramping up at Oko West; (v) the strong exploration potential of the Blanket, Contact, Chega Tudo and Mandiocal deposits at Gurupi; and (vi) in general, the sections entitled "Oko West - Regional Exploration", "Gurupi - 2025 Exploration Program Increase" and "About G Mining Ventures Corp."; as well as the quoted comments of GMIN's Vice President, Geology & Resources.

Forward-looking statements are based on expectations, estimates and projections as of the time of this press release. Forward-looking statements are necessarily based upon a number of estimates and assumptions that, while considered reasonable by the Corporation as of the time of such statements, are inherently subject to significant business, economic and competitive uncertainties and contingencies. These estimates and assumptions may prove to be incorrect. Such assumptions include, without limitation, those relating to the price of gold and currency exchange rates, those relating to mineral reserves and resources as well as exploration targets, and those underlying the items listed in the above sections entitled "Oko West - Regional Exploration", "Gurupi - 2025 Exploration Program Increase" and "About G Mining Ventures Corp."

Many of these uncertainties and contingencies can directly or indirectly affect, and could cause, actual results to differ materially from those expressed or implied in any forward-looking statements. There can be no assurance that, notably but without limitation, (i) the Corporation will continue to advance permitting for Gurupi at same or better pace; (ii) the grade associated with Oko West's newly discovered plunge will be integrated to the existing (open pit and underground) mine plan; (iii) the offshoots stemming from Oko West's "Splay Model" will lead to highly prospective zones for exploration; (iv) ongoing exploration efforts at Oko West will lead to the identification of targets; (v) Gurupi will be a cornerstone asset in the Corporation's portfolio; (vi) the surface mineralized structure identified by soil sampling and trenching at Gurupi will continue at depth; (vii) the planned RC drilling, soil sampling and trenching at Gurupi for the remainder of 2025, will generate new exploration targets; (viii) the permitting process for diamond drilling at Gurupi will be completed in Q1-2026; (ix) a formal construction for Oko West will be made in H2-2025, or at all; (iii) Guyana's regulatory environment will ensure timely decision-making allowing GMIN to achieve project milestones; (x) Oko West will advance responsibly and on schedule; (xi) GMIN will achieve its stated objectives for Oko West and Gurupi; or (xii) TZ and Oko West will grow GMIN into the next intermediate producer, as future events could differ materially from what is currently anticipated by the Corporation. In addition, there can be no assurance that Brazil and/or Guyana will remain mining friendly and prospective jurisdictions.

By their very nature, forward-looking statements involve inherent risks and uncertainties, both general and specific, and risks exist that estimates, forecasts, projections and other forward-looking statements will not be achieved or that assumptions do not reflect future experience. Forward-looking statements are provided for the purpose of providing information about management's expectations and plans relating to the future. Readers are cautioned not to place undue reliance on these forward-looking statements as a number of important risk factors and future events could cause the actual outcomes to differ materially from the beliefs, plans, objectives, expectations, anticipations, estimates, assumptions and intentions expressed in such forward-looking statements. All of the forward-looking statements made in this press release are qualified by these cautionary statements and those made in the Corporation's other filings with the securities regulators of Canada including, but not limited to, the cautionary statements made in the relevant sections of the Corporation's (i) Annual Information Form dated March 27, 2025, for the financial year ended December 31, 2024, and (ii) Management Discussion & Analysis. The Corporation cautions that the foregoing list of factors that may affect future results is not exhaustive, and new, unforeseeable risks may arise from time to time. The Corporation disclaims any intention or obligation to update or revise any forward-looking statements or to explain any material difference between subsequent actual events and such forward-looking statements, except to the extent required by applicable law.

Table 1 - Major Composites for Oko West Project

06.12.2025 Seite 4/9

HoleID	Zones	From	n To	Length	True Width		t Composites Tar	get
OKWR25-1839) LDZ	37	58	21	16.9	3.8	21.0 m at 3.80 g/t Au B1	
OKWD25-533	LDZ	102	116	14	12.3	4.38	14.0 m at 4.38 g/t Au B1	
OKWD25-540	LDZ	456.	5 466.7	710.2	8.7	3.81	10.2 m at 3.81 g/t Au B1	
OKWD25-533	AU_3	6	21.5	15.5	13.6	3.53	15.5 m at 3.53 g/t Au B1	
OKWD25-517	LDZ	350	359	9	8.1	4.71	9.0 m at 4.71 g/t Au B1	
OKWD25-537	LDZ	434	448.6	614.6	13.2	2.19	14.6 m at 2.19 g/t Au B1	
OKWD25-517	AU_2	328	335	7	6.3	3.26	7.0 m at 3.26 g/t Au B1	
OKWT25-125	AU_2	9	17	8	8.0	2.45	8.0 m at 2.45 g/t Au B1	
OKWD25-515	LDZ	361.	5 368.9	97.4	6.1	2.28	7.4 m at 2.28 g/t Au B1	
OKWD25-549	LDZ	386.8	393.3	36.5	5.6	2.79	6.5 m at 2.79 g/t Au B1	
OKWD25-523	LDZ	18	28	10	8.2	1.48	10.0 m at 1.48 g/t Au B1	
OKWD25-537	AU2	421	428	7	6.3	1.93	7.0 m at 1.93 g/t Au B1	
OKWD25-520	LDZ	43.7	54.1	10.4	8.5	1.17	10.4 m at 1.17 g/t Au B1	
OKWD25-515	AU_2	335.4	4 346.5	511.1	9.1	1.09	11.1 m at 1.09 g/t Au B1	
OKWT25-140	AU_3	0	21	21	21.0	0.54	21.0 m at 0.54 g/t Au B1	
OKWD25-532	LDZ	172.	5 183.2	210.7	9.5	1.02	10.7 m at 1.02 g/t Au B1	
OKWD25-519A	ALDZ	252.8	8 259	6.2	5.0	1.73	6.2 m at 1.73 g/t Au B1	
OKWD25-517	AU_3	315	317.8	32.8	2.5	3.62	2.8 m at 3.62 g/t Au B1	
OKWT25-125	AU_2	22	28	6	6.0	1.57	6.0 m at 1.57 g/t Au B1	
OKWD25-546	LDZ	409	413	4	3.2	2.13	4.0 m at 2.13 g/t Au B1	
OKWD25-530	LDZ	336	346	10	8.2	0.84	10.0 m at 0.84 g/t Au B1	
OKWD25-526	LDZ	496	499.7	73.7	2.8	2.08	3.7 m at 2.08 g/t Au B1	
OKWD25-523	AU_2	0	3.2	3.2	2.6	2.12	3.2 m at 2.12 g/t Au B1	
OKWD25-526	AU_2	476.9	9 486	9.1	6.9	0.63	9.1 m at 0.63 g/t Au B1	
OKWD25-531	AU_2	144.9	9 152	7.1	6.3	0.79	7.1 m at 0.79 g/t Au B1	
OKWT25-134	AU_2	0	2	2	2.0	2.72	2.0 m at 2.72 g/t Au B1	
OKWD25-543	LDZ	385.8	391.7	75.9	5.3	0.89	5.9 m at 0.89 g/t Au B1	
OKWD25-518	LDZ	492.	5 495.4	42.9	2.4	37.85	2.9 m at 37.85 g/t Au B2	
OKWD25-516	LDZ	414.	3 420.3	36	4.9	2.35	6.0 m at 2.35 g/t Au B2	
OKWD25-528	AU_2	98.2	149.4	451.2	41.8	1.96	51.2 m at 1.96 g/t Au B4	

06.12.2025 Seite 5/9

OKWD25-528 OKWD25-536 OKWD25-536	LDZ AU_3 LDZ	6488.626.321	108.6	31.3 320 28.7			31.3 m at 2.68 g/t Au B4 20.0 m at 2.49 g/t Au B4
OKWD25-536	AU_3 LDZ	26.3			17.3	2.49	20.0 m at 2.49 g/t Au B4
	LDZ		55	20.7			
0101/00= =00		21		20.1	26.0	1.67	28.7 m at 1.67 g/t Au B4
OKWD25-539	AU 3A		26	5	4.1	5.55	5.0 m at 5.55 g/t Au B4
OKWD25-528	, .O_O, .	55.4	64	8.6	7.2	2.53	8.6 m at 2.53 g/t Au B4
OKWD25-538	LDZ	14	19	5	4.1	3.22	5.0 m at 3.22 g/t Au B4
OKWD25-542	LDZ	6.5	23	16.5	14.5	0.83	16.5 m at 0.83 g/t Au B4
OKWD25-536	AU_3A	9.1	21.3	12.2	10.5	0.94	12.2 m at 0.94 g/t Au B4
OKWD25-528	LDZ	152	162.5	10.5	8.8	1.01	10.5 m at 1.01 g/t Au B4
OKWD25-536	AU_2	69.4	80.9	11.4	9.9	0.46	11.4 m at 0.46 g/t Au B4
OKWD25-547	LDZ	319.7	324.7	'5	4.4	1.94	5.0 m at 1.94 g/t Au B5
OKWD25-545	LDZ	340	351.6	11.6	10.2	0.83	11.6 m at 0.83 g/t Au B5
OKWD25-548	LDZ	258.1	273	14.9	13.1	1.56	14.9 m at 1.56 g/t Au B7
OKWD25-547	LDZ_B7	497.5	512.3	14.8	13.0	0.59	14.8 m at 0.59 g/t Au Splay
OKWD25-545	AU_2FW	446.2	458.1	11.9	10.4	5.26	11.9 m at 5.26 g/t Au Splay
OKWD25-544	LDZ_B7	273.7	276.3	32.6	2.2	4.39	2.6 m at 4.39 g/t Au Splay
OKWD25-516	ODZ	110	124.1	14	11.4	1.1	14.0 m at 1.10 g/t Au Splay
OKWD25-545	AU_3HW	311.7	'318.6	37	6.1	2.08	7.0 m at 2.08 g/t Au Splay
OKWR25-1838	3 Splay_FW2	70	75	5	4.1	2.22	5.0 m at 2.22 g/t Au Splay
OKWD25-528	CTZ	167.9	174	6.1	5.1	1.73	6.1 m at 1.73 g/t Au Splay
OKWD25-517	ODZ	92.2	103	10.8	9.8	0.9	10.8 m at 0.90 g/t Au Splay
OKWD25-522	Splay_FW2	89.4	90.6	1.2	1.0	7.75	1.2 m at 7.75 g/t Au Splay
OKWD25-516	CTZ	422.5	425	2.5	2.0	3.63	2.5 m at 3.63 g/t Au Splay
OKWD25-526		505		6	4.6	1.31	6.0 m at 1.31 g/t Au Splay
Table 2 - Major OKWD25-523	Composites C Splay_FW2.5	3urupi 5151.8	Trenc 3152.6	thes 0.8	0.7	9.46	0.8 m at 9.46 g/t Au Splay
OKWD25-513	ODZ	149	157.2	28.2	7.4	0.86	8.2 m at 0.86 g/t Au Splay
OKWD25-523	Splay_FW2	114	119	5	4.1	1.41	5.0 m at 1.41 g/t Au Splay
OKWD25-518	ODZ	174.3	188.7	14.4	11.8	0.44	14.4 m at 0.44 g/t Au Splay

06.12.2025 Seite 6/9

HoleID	Target	From	n To	Length	Au g/	t Composi	ites
GMAMT-25-008	3 Grodiacol	43	52	9.0	3.52	9 m 3.52	g/t Au
GMAMT-25-005	5 Grodiacol	18	21	3.0	3.63	3 m 3.63	g/t Au
GMAMT-25-005	5 Grodiacol	0	7	7.0	0.97	7 m 0.97	g/t Au
GMAMT-25-001	I Grodiacol	27	30	3.0	2.09	3 m 2.09	g/t Au
GMAMT-25-001	I Grodiacol	6	11	5.0	0.89	5 m 0.89	g/t Au
GMAMT-25-002	2 Grodiacol	66	70	4.0	0.97	4 m 0.97	g/t Au
GMAMT-25-001	I Grodiacol	16	20	4.0	0.95	4 m 0.95	g/t Au
GMAMT-25-005	5 Grodiacol	50	54	4.0	0.75	4 m 0.75	g/t Au
GMAMT-25-008	3 Grodiacol	11	14	3.0	0.86	3 m 0.86	g/t Au
GMAMT-25-001	I Grodiacol	72	79	7.0	0.35	7 m 0.35	g/t Au
GMAMT-25-003	3 Grodiacol	52	56	4.0	0.37	4 m 0.37	g/t Au
GMAMT-25-001	I Grodiacol	47	49	2.0	0.62	2 m 0.62	g/t Au
GMAMT-25-005	5 Grodiacol	37	39	2.0	0.46	2 m 0.46	g/t Au
GMAMT-25-004	4 Grodiacol	57	59	2.0	0.45	2 m 0.45	g/t Au

Table 3 - Oko West Collar Coordinates

Hole Number	Type Easting Northing	JUTM	Elevation	n Depth	n Azimuth	n Dip
OKWD25-513	DDH 273121 702648	PSAD56 - UTM Z21N	165	260	270	50
OKWD25-514	DDH 273075 702662	PSAD56 - UTM Z21N	164	206	270	50
OKWD25-515	DDH 273027 702754	PSAD56 - UTM Z21N	164	424	270	60
OKWD25-516	DDH 273070 702757	PSAD56 - UTM Z21N	165	439	270	60
OKWD25-517	DDH 273066 702697	PSAD56 - UTM Z21N	165	407	270	50
OKWD25-518	DDH 273136 702761	PSAD56 - UTM Z21N	177	513	270	60
OKWD25-519A	A DDH 272944 702273	PSAD56 - UTM Z21N	176	304	260	59
OKWD25-520	DDH 272734 702404	PSAD56 - UTM Z21N	186	228	270	60
OKWD25-521	DDH 272663 702370	PSAD56 - UTM Z21N	N120	495	270	60
OKWD25-522	DDH 272667 702461	PSAD56 - UTM Z21N	N110	176	270	60
OKWD25-523	DDH 272714 702468	PSAD56 - UTM Z21N	198	253	270	60
OKWD25-524	DDH 272656 702420	PSAD56 - UTM Z21N	N116	209	270	60
OKWD25-525	DDH 273120 702351	PSAD56 - UTM Z21N	190	696	268	57
OKWD25-526	DDH 273112 702337	PSAD56 - UTM Z21N	N91	562	268	65

06.12.2025 Seite 7/9

OKWD25-527	DDH	273122702352	2 F	PSAD56 - UTM Z21N90	461	270	50
OKWD25-528	DDH	272779 701467	7 F	PSAD56 - UTM Z21N87	255	267	58
OKWD25-529	DDH	273025 702528	3 F	PSAD56 - UTM Z21N 84	440	270	67
OKWD25-530	DDH	273004 702535	5 F	PSAD56 - UTM Z21N 87	368	267	58
OKWD25-531	DDH	272869702653	3 F	PSAD56 - UTM Z21N 68	206	255	50
OKWD25-532	DDH	272872702723	3 F	PSAD56 - UTM Z21N 66	217	255	50
OKWD25-533	DDH	272803702734	4 F	PSAD56 - UTM Z21N 84	229	250	50
OKWD25-534	DDH	272655 701223	3 F	PSAD56 - UTM Z21N 115	250	280	50
OKWD25-535	DDH	272652 701545	5 F	PSAD56 - UTM Z21N 92	251	270	55
OKWD25-536	DDH	272751 701574	1 F	PSAD56 - UTM Z21N 82	322	270	55
OKWD25-537	DDH	273137702692	2 F	PSAD56 - UTM Z21N 70	484	265	49
OKWD25-538	DDH	272681 701874	1 F	PSAD56 - UTM Z21N 146	131	270	60
OKWD25-539	DDH	272701 701922	2 F	PSAD56 - UTM Z21N 146	181	270	60
OKWD25-540	DDH	273137702692	2 F	PSAD56 - UTM Z21N71	492	265	56
OKWD25-541	DDH	272623701609) F	PSAD56 - UTM Z21N 117	256	270	60
OKWD25-542	DDH	272660 701523	3 F	PSAD56 - UTM Z21N 83	271	250	50
OKWD25-543	DDH	273057702465	5 F	PSAD56 - UTM Z21N 90	529	268	52
OKWD25-544	DDH	272652701217	7 F	PSAD56 - UTM Z21N 115	302	250	50
OKWD25-545	DDH	272901 701188	3 F	PSAD56 - UTM Z21N 110	551	250	50
OKWD25-546	DDH	273060 702465	5 F	PSAD56 - UTM Z21N 90	670	264	61
OKWD25-547	DDH	272892701058	3 F	PSAD56 - UTM Z21N 98	552	250	50
OKWD25-548	DDH	272812700498	3 F	PSAD56 - UTM Z21N 69	424	250	50
OKWD25-549	DDH	273055 702465	5 F	PSAD56 - UTM Z21N 90	416	255	54
OKWD25-550	DDH	272705 700499) F	PSAD56 - UTM Z21N 69	374	248	50
OKWD25-551	DDH	272691 700399) F	PSAD56 - UTM Z21N 106	355	250	50
TOHOW D125051572 1p	iDTD el	n21723606071002703	Bork	E16A.12∙5 6 - UTM Z21N 84	325	250	50
OKWD25-553	DDH	272702 700001	1 F	PSAD56 - UTM Z21N 105	444	245	55
OKWR25-1838	RC	272678 702569) F	PSAD56 - UTM Z21N 78	84	270	60
OKWR25-1839	RC	272735 702294	1 F	PSAD56 - UTM Z21N 116	108	260	60

06.12.2025 Seite 8/9

Hole Number Ty	be Easting Northing UTM	Elevation	n Depth	n Azimuth	n Dip
GMAMT-25-001 Tr	351262 9752196 SIRGAS2000 - Z211	N 41	100	44	0
GMAMT-25-002 Tr	352044 9752158 SIRGAS2000 - Z211	N 49	100	230	0
GMAMT-25-003 Tr	352387 9751921 SIRGAS2000 - Z211	N 53	89	230	0
GMAMT-25-004 Tr	352273 9752086 SIRGAS2000 - Z211	N 41	106	230	0
GMAMT-25-005 Tr	351805 9751724 SIRGAS2000 - Z211	N 37	72	44	0
GMAMT-25-008 Tr	351697 9752266 SIRGAS2000 - Z211	N 42	110	50	0
GMAMT-25-010 Tr	352058 9752048 SIRGAS2000 - Z211	N 48	160	230	0

∀iewaniginal content to download

meditionaling bitsps://www.u.c.nnewsprice.idem/nawssteleraeea/graginging.299tug25.rgpertsonewdoighing.godg-discovery-at-oko-wo

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere AGB/Disclaimer!

Die Reproduktion, Modifikation oder Verwendung der Inhalte ganz oder teilweise ohne schriftliche Genehmigung ist untersagt! Alle Angaben ohne Gewähr! Copyright © by Minenportal.de 2007-2025. Es gelten unsere <u>AGB</u> und <u>Datenschutzrichtlinen</u>.

06.12.2025 Seite 9/9